Displaying all 20 publications

Abstract:
Sort:
  1. Ismail, I., Anuar, M.S., Shamsudin, R.
    MyJurnal
    Green coffee beans are stored for a certain period and under certain conditions until they are finally utilized. The storage period may depend on customer demand while the storage conditions depend on where the coffee beans are stored. Thus, this research emphasizes the physicochemical changes that occur in Liberica coffee beans during storage under the Malaysian
    climate (average temperature and relative humidity of 29.33ºC and 71.75% respectively). The changes in the physico-chemical (coffee size, mass, densities, colour, proximate analysis, sucrose, chlorogenic acid content) and microbiological (yeast and mould count) properties were evaluated during eight months of storage. After the storage, the physical properties of the coffee changed as the coffee beans expanded in size, reduced in mass and density and became brighter in colour. Changes in the chemical properties were also detected where the moisture decreased and the ash content increased. In addition, the sucrose level was found to decrease with a corresponding increase in chlorogenic acid. During storage, the counts of yeast and mould were reduced. Model equations describing the changes in the properties were developed. The overall conclusion was that the coffee beans reduced in quality during storage.
  2. Ismail, I., Anuar, M. S., Shamsudin, R.
    MyJurnal
    Liberica coffee is the most important coffee species grown in Malaysia. However, there is little or no research at all conducted on coffee berries and green coffee beans since the plant itself is a low income crop in Malaysia. Therefore, research on Malaysian Liberica coffee can help to increase the knowledge of coffee farmers and coffee manufacturers in the processing and handling of the coffee. Physical properties of Liberica coffee berries and beans were investigated the current study. The properties investigated include the size, mass, density, coefficient of friction, angle of repose, fracture force and colour. In comparison to Arabica and Robusta coffee, Liberica coffee has the biggest size, mass, true density and fracture force values but were lower in bulk density in both berries and beans. The Liberica berries and beans were found to be orange-ish and yellowish colour respectively. Angle of repose was low and approximately similar in berries and beans while jute fibre gave the highest friction to both Liberica berries and beans.
  3. Ismail, N.A, Noranizan, M.A., Shamsudin, R., Karim, R
    MyJurnal
    Cassava chips that exist in the current market have no standardisation and cannot be stacked
    nicely into cylindrical container. The objectives of this work are to determine the different dimension of cassava chips produced with different thickness and to develop stackable chips during mass production. Fresh cassava tubers were harvested, washed, peeled and sliced. The thickness measurements used were 1.0 mm, 1.5 mm, 1.75 mm and 2.0 mm and 1.27 mm thickness was measured from commercial potato chips as a controlled sample. Then, it was fried in deep fat fryer with the temperature of 170°C. For each thickness studied, different
    numbers of slice (10, 20, 30 and 40 slices) were fried simultaneously. Results showed that there
    are 6 shapes of fried chips produced during the frying. To conclude, thickness of the slice and
    number of slices fried simultaneously give impact towards the shape of fried chip.
  4. Zainal Abidin, M., Shamsudin, R., Othman, Z., Abdul Rahman, R.
    MyJurnal
    Cantaloupes continue to ripen after harvesting which is caused by ethylene production due to climacteric behaviour during postharvest storage. In this study, the cantaloupe fruits harvested at commercial maturity were evaluated for quality attributes during three weeks of storage at 10°C and a relative humidity (RH) of 90±5%. In addition, fresh-cut samples were stored for a further 19 days at 2°C and 87% RH. The fresh-cut samples were prepared on a weekly basis by dipping into deionised water (control) at 2°C for 1 minute. The effect of postharvest storage of cantaloupe on the physico-chemical properties and microbial activity was observed prior to fresh-cut processing. It was found that firmness, luminosity (L*), and titratable acidity (TA) decreased, while total soluble solids (TSS), pH, TSS:TA ratio, microbial activity (total plate count (TPC) and yeast and mould (YM)) of the fresh-cut increased over the postharvest storage period of the fruit. Meanwhile, the orange colour and the intensity (hue angle, hab, and chromaticity) of the flesh did not differ significantly during storage. The cantaloupe stored for three weeks at a low temperature indicated a successful potential for fresh-cut processing due to good maintenance of the product quality.
  5. Mohd-Hanif, H.A., Shamsudin, R., Mohd Adzahan, N.
    MyJurnal
    Tamarind juice is commonly treated with thermal treatment to inactivate microorganisms.
    However, thermal treatment deteriorates the appearance and flavor of tamarind juice. In this
    study, the performance of UVC treatment on clear and turbid tamarind juice as an alternative to
    thermal treatment was investigated. Results showed that UVC treatment was able to reduce E.
    coli O157:H7 by 7-log reduction but unable to completely remove the total bacterial population
    as observed in thermally treated clear and turbid tamarind juices. The pH of treated tamarind
    juices was comparable to each other. Nonetheless, UVC treatment caused significant changes
    on the flavor of the juice as it significantly reduced the total soluble solids of tamarind juices
    and decreased the titratable acidity of turbid tamarind juice. However, UVC treatments retained
    the appearance i.e. turbidity and color of tamarind juices better than thermal treatment.
  6. Kamarul Zaman, A. A., Shamsudin, R., Mohd Adzahan, N.
    MyJurnal
    Quality and alimental contents of single fruit juice can be ameliorated through mixing or blending process with other fruit juices. Pineapple and mango are the most popular tropical fruits in Malaysia with good characteristic taste. Color properties of pineapple and mango juice blends at ratio of 70P:30M; 50P:50M; 30P:70M was evaluated in term of L*, a*, b* hue, Chroma, color difference (ΔE). Blends ratio 70P:30M juice give the best color performance in terms of hue, chroma and ΔE. Physicochemical properties of juice blends ratio of 70P:30M also give more perishable results of pH (4.32) titratable acidity (0.66% malic acid), total soluble solid (13.67), vitamin C (54.25 mg ascorbic acid/100 ml), and turbidity (438 NTU).
  7. Ahmad, S., Anuar, M.S., Taip, F.S., Shamsudin, R.
    MyJurnal
    This study was conducted to determine the influence of raw material variation, equipment
    process variables and device stability on the drying process of rambutan seed using oven and
    microwave drying equipments. The raw material variations studied were skin colour (yellow
    and fully red), storage period (fresh and stored) and seed mass (5 and 10 g). The important
    equipment process variables studied were oven temperature (40 and 60°C) and microwave
    power (250 and 1000 W).The output power and drying distribution in the drying chamber were
    studied to examine the device stability. Results indicated that the seed mass, oven temperature
    and microwave power influenced the drying time. The skin colour and storage period were
    negatively correlated with drying time due to drying time speculate to relay on time required for
    moisture removal that associated to initial moisture content and seed mass. It is also observed
    that the drying time will be shorten if the sample was located at the central of the microwave
    drying chamber. In contrast, the oven exhibited higher stability compared to microwave due
    to its ability to provide similar level of heating at each location in the drying chamber. This
    information will aid researchers and industrial operators to design an effective drying process
    using microwave and oven thus reducing cost and time.
  8. Tan, S.B., Shamsudin, R., Mohammed, M. A., Rahman, N. A.
    MyJurnal
    Sesame Cracker or Kuih Bijan is a popular traditional Malays snack in Malaysia. The simplest
    formulation of Sesame Cracker dough includes glutinous rice flour, sugar, and water. In order
    to reduce the negative effect caused by dough stickiness, the effect of mixing period (3 to 7
    minutes), water (41.6 to 45.6%) and sugar (1 to 9%) on dough stickiness of sesame cracker
    dough were studied using Texture Analyzer and Chen-Hoseney methodologies (i.e. Chen-
    Hoseney Dough Stickiness Cell). The result obtained showing that the increment of mixing
    time, water and sugar addition, increased the dough stickiness, work of adhesion/adhesiveness
    and dough strength/cohesiveness. However, overmixing of dough had led to the decrease of
    these parameters.
  9. Mohd Ali, M., Hashim, N., Bejo, S. K., Shamsudin, R.
    MyJurnal
    The non-destructive feature of optical techniques has gained interests for quality assessment
    of various agricultural produce as well as in food processing technology. The principle and
    interaction of light with food and agricultural produce provide essential information for quality
    assessment which promotes non-destructive inspection methods. This review encompasses the
    determination of optical properties associated with the evaluation of the quality of agricultural
    produce. The understanding of how light interacts with turbid agricultural produce is also
    presented, including light characteristics such as absorption and scattering. A brief overview of
    the estimation and application of the optical parameters in food and agricultural processing are
    discussed. The problems and implementation of optical parameters as well as its future trend
    are also included.
  10. Ismail H, Shamsudin R, Abdul Hamid MA
    Mater Sci Eng C Mater Biol Appl, 2016 Jan 1;58:1077-81.
    PMID: 26478406 DOI: 10.1016/j.msec.2015.09.030
    β-wollastonite (β-CaSiO3) was synthesized from rice husk ash and calcium carbonate, and a study of the effects of the autoclaving and sintering steps is presented here. Autoclaving and sintering at 8h and 2h yielded the β-wollastonite phase in full, with improved crystallinity. Nucleation between rice husk ash and calcium oxide occurred around 135 °C, pressure 0.24 MPa, and growth proved to be more crystalline after the ripening period. For shorter processing times, and for both unsintered and unautoclaved samples, cristobalite and unstable tricalcium silicate phases were present. Crystallite size was increased by longer sintering times but reduced by longer autoclaving times. The β-wollastonite obtained had a random branch-like structure. In conclusion, the introduction of the autoclaving step successfully obtained β-wollastonite from a reaction between rice husk ash and calcium oxide.
  11. Mohd-Hanif H, Shamsudin R, Adzahan NM
    Food Sci Biotechnol, 2016;25(Suppl 1):63-67.
    PMID: 30263487 DOI: 10.1007/s10068-016-0099-2
    Lime juice is in high demand due to a sour taste. Commercial thermal pasteurization extends juice shelf-life; however, fruit juice subjected to thermal pasteurization tends to change color and lose vitamin content. Lime juice was irradiated with ultraviolet-C (UVC) at dosages of 22.76, 30.19, and 44.24 mJ/cm2 to investigate effects on the physicochemical properties of lime juice. pH values of lime juice did not change while total soluble solids, turbidity, titratable acidity, sweetness, and color values of lime juice did change after UV treatments. Changes in quality index indicators were prominent at the highest UV dosage of 44.24 mJ/cm2. A low UVC dosage was effective for treatment of lime juice with minimal changes in juice properties.
  12. Sabbaghizadeh R, Shamsudin R, Deyhimihaghighi N, Sedghi A
    PLoS One, 2017;12(1):e0168737.
    PMID: 28060829 DOI: 10.1371/journal.pone.0168737
    In the present study, the normoxic polyacrylamide gelatin and tetrakis hydroxy methyl phosphoniun chloride (PAGAT) polymer gel dosimeters were synthesized with and without the presence of silver (Ag) nanoparticles. The amount of Ag nanoparticles varied from 1 to 3 ml with concentration 3.14 g/l, thus forming two types of PAGAT polymer gel dosimeters before irradiating them with 6 to 25 Gy produced by 1.25-MeV 60Co gamma rays. In this range, the predominant gamma ray interaction with matter is by Compton scattering effect, as the photoelectric absorption effect diminishes. MRI was employed when evaluating the polymerization of the dosimeters and the gray scale of the MRI film was determined via an optical densitometer. Subsequent analyses of optical densities revealed that the extent of polymerization increased with the increase in the absorbed dose, while the increase of penetration depth within the dosimeters has a reverse effect. Moreover, a significant increase in the optical density-dose response (11.82%) was noted for dosimeters containing 2 ml Ag nanoparticles.
  13. Rahman NFA, Shamsudin R, Ismail A, Karim Shah NNA
    Food Sci Biotechnol, 2016;25(Suppl 1):85-90.
    PMID: 30263490 DOI: 10.1007/s10068-016-0102-y
    Changes in physicochemical properties of moisture, ash, and fat contents, and color, due to freeze and oven post-drying treatments on flavedo, albedo, and lamella pomelo fruit peels were investigated. Physicochemical properties influence consumer acceptability and only a few studies are known. Pomelo peels were subjected to freeze drying and conventional drying at 60°C. Fresh pomelo peel was used as a control. Post-drying treatment changes in moisture, ash, and fat contents were observed, compared to controls. Minimal color changes were observed for freeze drying, compared with oven drying for flavedo, albedo, and lamella. Useful information for evaluation of drying treatments that can be used on pomelo peels is provided.
  14. Shamsudin R, Abdul Azam F', Abdul Hamid MA, Ismail H
    Materials (Basel), 2017 Oct 17;10(10).
    PMID: 29039743 DOI: 10.3390/ma10101188
    The aim of this study was to prepare β-wollastonite using a green synthesis method (autoclaving technique) without organic solvents and to study its bioactivity. To prepare β-wollastonite, the precursor ratio of CaO:SiO₂ was set at 55:45. This mixture was autoclaved for 8 h and later sintered at 950 °C for 2 h. The chemical composition of the precursors was studied using X-ray fluorescence (XRF), in which rice husk ash consists of 89.5 wt % of SiO₂ in a cristobalite phase and calcined limestone contains 97.2 wt % of CaO. The X-ray diffraction (XRD) patterns after sintering showed that only β-wollastonite was detected as the single phase. To study its bioactivity and degradation properties, β-wollastonite samples were immersed in simulated body fluid (SBF) for various periods of time. Throughout the soaking period, the molar ratio of Ca/P obtained was in the range of 1.19 to 2.24, and the phase detected was amorphous calcium phosphate, which was confirmed by scanning electron microscope with energy dispersive X-ray analysis (SEM/EDX) and XRD. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the peaks of the calcium and phosphate ions increased when an amorphous calcium phosphate layer was formed on the surface of the β-wollastonite sample. A cell viability and proliferation assay test was performed on the rice husk ash, calcined limestone, and β-wollastonite samples by scanning electron microscope. For heavy metal element evaluation, a metal panel that included As, Cd, Pb, and Hg was selected, and both precursor and β-wollastonite fulfilled the requirement of an American Society for Testing and Materials (ASTM F1538-03) standard specification. Apart from that, a degradation test showed that the loss of mass increased incrementally as a function of soaking period. These results showed that the β-wollastonite materials produced from rice husk ash and limestone possessed good bioactivity, offering potential for biomedical applications.
  15. Mohd Ali M, Hashim N, Bejo SK, Shamsudin R
    J Food Sci Technol, 2017 Oct;54(11):3650-3657.
    PMID: 29051660 DOI: 10.1007/s13197-017-2826-y
    The potential of laser light backscattering imaging was investigated for monitoring color parameters of seeded and seedless watermelons during storage. Two watermelon cultivars were harvested and stored for 3 weeks with seven measuring storage days (0, 4, 8, 12, 15, 18, and 21). The color parameters of watermelons were monitored using the conventional colorimetric methods (L*, a*, b*, C*, H*, and ∆E*) and laser light backscattering imaging system. A laser diode emitting at 658 nm and 30 mW power was used as a light source to obtain the backscattering image. The backscattering images were evaluated by the extraction of backscattering parameters based on the mean pixel values. The results showed that a good color prediction was achieved by the seedless watermelon with the R2 are all above 0.900. Thus, the application of the laser light backscattering imaging can be used for evaluating the color parameters of watermelons during the storage period.
  16. Jimoh KA, Hashim N, Shamsudin R, Che Man H, Jahari M
    J Sci Food Agric, 2024 Mar 07.
    PMID: 38451113 DOI: 10.1002/jsfa.13445
    BACKGROUND: Five computational intelligence approaches, namely Gaussian process regression (GPR), artificial neural network (ANN), decision tree (DT), ensemble of trees (EoT) and support vector machine (SVM), were used to describe the evolution of moisture during the dehydration process of glutinous rice. The hyperparameters of the models were optimized with three strategies: Bayesian optimization, grid search and random search. To understand the parameters that facilitate intelligence model adaptation to the dehydration process, global sensitivity analysis (GSA) was used to compute the impact of the input variables on the model output.

    RESULT: The result shows that the optimum computational intelligence techniques include the 3-9-1 topology trained with Bayesian regulation function for ANN, Gaussian kernel function for SVM, Matérn covariance function combined with zero mean function for GPR, boosting method for EoT and 4 minimum leaf size for DT. GPR has the highest performance with R2 of 100% and 99.71% during calibration and testing of the model, respectively. GSA reveals that all the models significantly rely on the variation in time as the main factor that affects the model outputs.

    CONCLUSION: Therefore, the computational intelligence models, especially GPR, can be applied for an effective description of moisture evolution during small-scale and industrial dehydration of glutinous rice. © 2024 Society of Chemical Industry.

  17. Zen NI, Abd Gani SS, Shamsudin R, Masoumi HR
    ScientificWorldJournal, 2015;2015:684319.
    PMID: 26171418 DOI: 10.1155/2015/684319
    The usage of soy is increasing year by year. It increases the problem of financial crisis due to the limited sources of soybeans. Therefore, production of oral tablets containing the nutritious leftover of soymilk production, called okara, as the main ingredient was investigated. The okara tablets were produced using the direct compression method. The percentage of okara, guar gum, microcrystalline cellulose (Avicel PH-101), and maltodextrin influenced tablets' hardness and friability which are analyzed using a D-optimal mixture design. Composition of Avicel PH-101 had positive effects for both hardness and friability tests of the tablets. Maltodextrin and okara composition had a significant positive effect on tablets' hardness, but not on percentage of friability of tablets. However, guar gum had a negative effect on both physical tests. The optimum tablet formulation was obtained: 47.0% of okara, 2.0% of guar gum, 35.0% of Avicel PH-101, and 14.0% of maltodextrin.
  18. Al-Hardan NH, Abdul Hamid MA, Shamsudin R, Othman NK, Kar Keng L
    Sensors (Basel), 2016 Jun 29;16(7).
    PMID: 27367693 DOI: 10.3390/s16071004
    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H₂O₂), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H₂O₂ concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H₂O₂ concentrations (first region), and a LOD of 143.5 μM for the higher range of H₂O₂ concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H₂O₂ and revealed a good performance for the ZnO NR non-enzymatic H₂O₂ sensor.
  19. Lim K, Abdul Hamid MA, Shamsudin R, Al-Hardan NH, Mansor I, Chiu W
    Materials (Basel), 2016 Apr 20;9(4).
    PMID: 28773425 DOI: 10.3390/ma9040300
    In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions.
  20. Al-Hardan NH, Abdul Hamid MA, Ahmed NM, Jalar A, Shamsudin R, Othman NK, et al.
    Sensors (Basel), 2016 Jun 07;16(6).
    PMID: 27338381 DOI: 10.3390/s16060839
    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links