Displaying publications 1 - 20 of 22 in total

  1. Yong FL, Wang CW, Roslani AC, Law CW
    Int J Mol Sci, 2014 Jul 02;15(7):11713-29.
    PMID: 24992592 DOI: 10.3390/ijms150711713
    Recent advances in microRNAome have made microRNAs (miRNAs) a compelling novel class of biomarker in cancer biology. In the present study, the role of miR-23a in the carcinogenesis of colorectal cancer (CRC) was investigated. Cell viability, apoptosis, and caspase 3/7 activation analyses were conducted to determine the potentiality of apoptosis resistance function of miR-23a in CRC. Luciferase assay was performed to verify a putative target site of miR-23a in the 3'-UTR of apoptosis protease activating factor 1 (APAF1) mRNA. The expression levels of miR-23a and APAF1 in CRC cell lines (SW480 and SW620) and clinical samples were assessed using reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. We found that the inhibition of miR-23a in SW480 and SW620 cell lines resulted in significant reduction of cell viability and promotion of cell apoptosis. Moreover, miR-23a up-regulation was coupled with APAF1 down-regulation in CRC tissue samples. Taken together, miR-23a was identified to regulate apoptosis in CRC. Our study highlights the potential application of miR-23a/APAF1 regulation axis in miRNA-based therapy and prognostication.
    Matched MeSH terms: Caspase 7/genetics; Caspase 7/metabolism
  2. Li Lee M, Chung I, Yee Fung S, Kanthimathi MS, Hong Tan N
    Basic Clin Pharmacol Toxicol, 2014 Apr;114(4):336-43.
    PMID: 24118879 DOI: 10.1111/bcpt.12155
    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (LAAO), a heat-stable enzyme, is an extremely potent antiproliferative agent against cancer cells when compared with LAAO isolated from other snake venoms. King cobra venom LAAO was shown to exhibit very strong antiproliferative activities against MCF-7 (human breast adenocarcinoma) and A549 (human lung adenocarcinoma) cells, with an IC50 value of 0.04±0.00 and 0.05±0.00 μg/mL, respectively, after 72-hr treatment. In comparison, its cytotoxicity was about 3-4 times lower when tested against human non-tumourigenic breast (184B5) and lung (NL 20) cells, suggesting selective antitumour activity. Furthermore, its potency in MCF-7 and A549 cell lines was greater than the effects of doxorubicin, a clinically established cancer chemotherapeutic agent, which showed an IC50 value of 0.18±0.03 and 0.63±0.21 μg/mL, respectively, against the two cell lines. The selective cytotoxic action of the LAAO was confirmed by phycoerythrin (PE) annexin V/7-amino-actinomycin (AAD) apoptotic assay, in which a significant increase in apoptotic cells was observed in LAAO-treated tumour cells than in their non-tumourigenic counterparts. The ability of LAAO to induce apoptosis in tumour cells was further demonstrated using caspase-3/7 and DNA fragmentation assays. We also determined that this enzyme may target oxidative stress in its killing of tumour cells, as its cytotoxicity was significantly reduced in the presence of catalase (a H2O2 scavenger). In view of its heat stability and selective and potent cytotoxic action on cancer cells, king cobra venom LAAO can be potentially developed for treating solid tumours.
    Matched MeSH terms: Caspase 7/genetics; Caspase 7/metabolism
  3. Law BN, Ling AP, Koh RY, Chye SM, Wong YP
    Mol Med Rep, 2014 Mar;9(3):947-54.
    PMID: 24366367 DOI: 10.3892/mmr.2013.1878
    Neurodegenerative diseases remain a global issue which affects the ageing population. Efforts towards determining their aetiologies to understand their pathogenic mechanisms are underway in order to identify a pathway through which therapeutic measures can be applied. One such pathogenic mechanism, oxidative stress (OS), is widely considered to be involved in neurodegenerative disease. Antioxidants, most notably flavonoids, have promising potential for therapeutic use as shown in in vitro and in vivo studies. In view of the importance of flavonoids for combating OS, this study investigated the neuroprotective effects of orientin, which has been reported to be capable of crossing the blood‑brain barrier. The maximum non‑toxic dose (MNTD) of orientin against SH‑SY5Y neuroblastoma cells was determined using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay. The effects of the MNTD and the half MNTD (½MNTD) of orientin on cell cycle progression and intracellular reactive oxygen species (ROS) levels, as well as the activity of caspases 3/7, 8 and 9 after exposure to 150 µM of hydrogen peroxide (H2O2) were also determined using flow cytometry, a 2',7'‑dichlorodihydrofluorescein‑diacetate (DCFH‑DA) assay and caspase assay kits, respectively. The results revealed that orientin at ≤20 µM was not cytotoxic to SH‑SY5Y cells. After treatment with orientin at the MNTD, the percentage of apoptotic cells was significantly reduced compared with that in cells treated with 150 µM H2O2 alone. The results also showed that, although orientin at the MNTD and ½MNTD did not reduce intracellular ROS levels, it significantly inhibited the activity of caspases 3/7. Caspase 9 was significantly inactivated with orientin at the MNTD. Findings from this study suggest that the neuroprotection conferred by orientin was the result of the intracellular mediation of caspase activity.
    Matched MeSH terms: Caspase 7/metabolism
  4. Tee TT, Cheah YH, Hawariah LP
    Anticancer Res, 2007 Sep-Oct;27(5A):3425-30.
    PMID: 17970090
    F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.
    Matched MeSH terms: Caspase 7/metabolism
  5. Hajrezaie M, Paydar M, Moghadamtousi SZ, Hassandarvish P, Gwaram NS, Zahedifard M, et al.
    ScientificWorldJournal, 2014;2014:540463.
    PMID: 24737979 DOI: 10.1155/2014/540463
    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.
    Matched MeSH terms: Caspase 7/metabolism
  6. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    Molecules, 2012;17(3):2939-54.
    PMID: 22402764 DOI: 10.3390/molecules17032939
    Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.
    Matched MeSH terms: Caspase 7/metabolism
  7. Yaacob NS, Hamzah N, Nik Mohamed Kamal NN, Zainal Abidin SA, Lai CS, Navaratnam V, et al.
    PMID: 20684795 DOI: 10.1186/1472-6882-10-42
    The leaves of Strobilanthes crispus (S. crispus) which is native to the regions of Madagascar to the Malay Archipelago, are used in folk medicine for their antidiabetic, diuretic, anticancer and blood pressure lowering properties. Crude extracts of this plant have been found to be cytotoxic to human cancer cell lines and protective against chemically-induced hepatocarcinogenesis in rats. In this study, the cytotoxicity of various sub-fractions of dichloromethane extract isolated from the leaves of S. crispus was determined and the anticancer activity of one of the bioactive sub-fractions, SC/D-F9, was further analysed in breast and prostate cancer cell lines.
    Matched MeSH terms: Caspase 7/metabolism
  8. Nassar ZD, Aisha AF, Al Suede FS, Abdul Majid AS, Abdul Majid AM
    Biol Pharm Bull, 2012;35(4):503-8.
    PMID: 22466553
    Breast cancer is the most common cancer in women, and it can metastasize very rapidly. Tumor metastasis is the primary cause of cancer deaths. In the present study, we investigated the capability of koetjapic acid, a natural triterpene, in the induction of apoptosis and the inhibition of metastasis in the breast cancer cell line (MCF 7). The effects of koetjapic acid against 4 steps of metastasis have been assessed, including cell survival, clonogenicity, migration and invasion. Koetjapic acid exhibited cytotoxic activity against MCF 7 cells with an IC(50) of 68.88±6.075 μg/mL. The mechanism of cell death was confirmed due to the induction of apoptosis machineries; early and late apoptosis-related changes were detected, including the stimulation of caspase 3/7 activities, apoptosis-related morphological changes such as membrane blebbing, chromatin condensation and DNA fragmentation. A mitochondrial apoptosis pathway was found to be involved in koetjapic acid-induced cell death induction. Moreover, at a sub-toxic dose (15 μg/mL), Koetjapic acid inhibited cell migration and invasion significantly. Finally, koetjapic acid inhibited the colony formation properties of MCF 7 significantly. These results indicate that koetjapic acid possesses significant antitumor and antimetastatic effects, and warrants further investigation.
    Matched MeSH terms: Caspase 7/metabolism
  9. Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D
    Toxicol In Vitro, 2003 Aug;17(4):433-9.
    PMID: 12849726
    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.
    Matched MeSH terms: Caspase 7
  10. Yuliana ND, Tuarita MZ, Khatib A, Laila F, Sukarno S
    Food Sci Biotechnol, 2020 Jun;29(6):825-835.
    PMID: 32523792 DOI: 10.1007/s10068-019-00725-2
    GC-MS metabolomics was used to discriminate the phytochemicals profile of Indonesian white, red, and black rice brans, and Japanese white rice brans. This technique was used for the first time to identify compounds in rice brans having cytotoxic activity against WiDr colon cancer cells. Orthogonal Projection to the Latent Structure (OPLS) analysis showed that protocatechuic acid (PA) was a discriminating factor found in black rice brans which strongly correlated with its cytotoxicity (IC50 8.53 ± 0.26 µM). Real time-PCR data demonstrated that PA cytotoxicity at different concentrations (1, 5, 10, 25 and 50 µg/mL) was mediated through different pathways. Bcl-2 expression was downregulated at all tested concentrations indicating apoptosis stimulation. At 1-10 ppm concentration, PA activated both intrinsic and extrinsic apoptosis pathways since the expression of p53, Bax, caspase-8, and caspase-9 were upregulated. At a higher dose (25 and 50 µg/mL), PA possibly involved in pyroptosis-mediated pro-inflammatory cell death by upregulating the expression of caspase-1 and caspase-7.
    Matched MeSH terms: Caspase 7
  11. Aziz MY, Omar AR, Subramani T, Yeap SK, Ho WY, Ismail NH, et al.
    Oncol Lett, 2014 May;7(5):1479-1484.
    PMID: 24765160
    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7.
    Matched MeSH terms: Caspase 7
  12. Chan KK, Wong RS, Mohamed SM, Ibrahim TA, Abdullah M, Nadarajah VD
    PMID: 22591286
    Bacillus thuringiensis (Bt) parasporal proteins with selective anticancer activity have recently garnered interest. This study determines the efficacy and mode of cell death of Bt 18 parasporal proteins against 3 leukemic cell lines (CEM-SS, CCRF-SB and CCRF-HSB-2).Cell-based biochemical analysis aimed to determine cell viability and the percentage of apoptotic cell death in treated cell lines; ultrastructural analysis to study apoptotic changes and Western blot to identify the parasporal proteins' binding site were performed. Bt 18 parasporal proteins moderately decreased viability of leukemic cells but not that of normal human T lymphocytes. Further purification of the proteins showed changes in inhibition selectivity. Phosphatidylserine externalization, active caspase-3, cell cycle, and ultrastructural analysis confirmed apoptotic activity and S-phase cell-cycle arrest. Western blot analysis demonstrated glyceraldehyde 3-phosphate dehydrogenase as a binding protein. We suggest that Bt 18 parasporal proteins inhibit leukemic cell viability by cell-cycle arrest and apoptosis and that glyceraldehyde 3-phosphate dehydrogenase binding initiates apoptosis.
    Matched MeSH terms: Caspase 7/metabolism*
  13. Chong HZ, Rahmat A, Yeap SK, Md Akim A, Alitheen NB, Othman F, et al.
    PMID: 22471785 DOI: 10.1186/1472-6882-12-35
    Strobilanthes crispus has been traditionally used as antidiabetic, anticancer, diuretic, antilytic and laxative agent. However, cytotoxicity and antiproliferative effect of S. crispus is still unclear.
    Matched MeSH terms: Caspase 7/metabolism
  14. Zahedifard M, Faraj FL, Paydar M, Yeng Looi C, Hajrezaei M, Hasanpourghadi M, et al.
    Sci Rep, 2015 Jun 25;5:11544.
    PMID: 26108872 DOI: 10.1038/srep11544
    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways.
    Matched MeSH terms: Caspase 7/metabolism
  15. Gurunanselage Don RAS, Yap MKK
    Biomed Pharmacother, 2019 Feb;110:918-929.
    PMID: 30572196 DOI: 10.1016/j.biopha.2018.12.023
    Arctium lappa L. is a perennial herb traditionally consumed to improve well-being. It has been widely reported for its antioxidant properties; however, very little is known for its exact mechanisms underlying the anticancer activity. This study aimed to investigate the mechanisms of anticancer action for different A. lappa root extracts. Arctium lappa root was extracted with ethanol, hexane and ethyl acetate, then examined for in vitro anticancer activity against cancerous HeLa, MCF-7, Jurkat cell lines and non-cancerous 3T3 cell lines. Induction of apoptosis was determined by cellular morphological changes, mitochondrial membrane potential (ΔΨm), caspase-3/7 activity and DNA fragmentation. The active compounds present in the most potent root extracts were identified by LC-ESI-MS. Among all the extracts, ethyl acetate root extract has the highest potency with IC50 of 102.2 ± 42.4 μg/ml, followed by ethanolic root extract in Jurkat T cells, at 24 h. None of the extracts were cytotoxic against 3T3 cells, suggesting that the extracts were selective against cancerous cells only. Both ethyl acetate and ethanolic root extracts exhibited significant morphological changes in Jurkat T cells, including the detachment from adjacent cells, appearance of apoptotic bodies and cells shrinkage. The extracts treated cells also displayed an increase in caspase-3/7 activity and alteration in mitochondrial membrane potential. Only ethyl acetate root extract at IC50 induced DNA fragmentation in Jurkat T cells. LC-ESI-MS analysis of the extract revealed the presence of 8 compounds, of which only 6 compounds with various biological activities reported. These findings suggest that the ethyl acetate extract of A. lappa had strong anticancer potential and induced intrinsic apoptosis via loss of ΔΨm and activation of caspase-3/7 This study can provide new insight to the discovery of new promising lead compound in chemopreventive and chemotherapeutic strategies.
    Matched MeSH terms: Caspase 7/metabolism*
  16. Md Nesran ZN, Shafie NH, Ishak AH, Mohd Esa N, Ismail A, Md Tohid SF
    Biomed Res Int, 2019;2019:3480569.
    PMID: 31930117 DOI: 10.1155/2019/3480569
    Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
    Matched MeSH terms: Caspase 7/metabolism
  17. Chowchaikong N, Nilwarangkoon S, Laphookhieo S, Tanunyutthawongse C, Watanapokasin R
    Int J Oncol, 2018 Jun;52(6):2031-2040.
    PMID: 29620273 DOI: 10.3892/ijo.2018.4353
    Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided important information on the molecular mechanisms underlying its antitumor activity.
    Matched MeSH terms: Caspase 7/metabolism
  18. Al-Obeed O, Vaali-Mohammed MA, Eldehna WM, Al-Khayal K, Mahmood A, Abdel-Aziz HA, et al.
    Onco Targets Ther, 2018;11:3313-3322.
    PMID: 29892198 DOI: 10.2147/OTT.S148108
    Introduction: Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rate. Developments in screening, prevention, biomarker, personalized therapies and chemotherapy have improved detection and treatment. However, despite these advances, many patients with advanced metastatic tumors still succumb to the disease. New anticancer agents are needed for treating advanced stage CRC as most of the deaths occur due to cancer metastasis. A recently developed novel sulfonamide derivative 4-((2-(4-(dimethylamino) phenyl)quinazolin-4-yl)amino)benzenesulfonamide (3D) has shown potent antitumor effect; however, the mechanism underlying the antitumor effect remains unknown.

    Materials and methods: 3D-mediated inhibition on cell viability was evaluated by MTT and real-time cell proliferation was measured by xCelligence RTDP instrument. Western blotting was used to measure pro-apoptotic, anti-apoptotic proteins and JAK2-STAT3 phosphorylation. Flow cytometry was used to measure ROS production and apoptosis.

    Results: Our study revealed that 3D treatment significantly reduced the viability of human CRC cells HT-29 and SW620. Furthermore, 3D treatment induced the generation of reactive oxygen species (ROS) in human CRC cells. Confirming our observation, N-acetylcysteine significantly inhibited apoptosis. This is further evidenced by the induction of p53 and Bax; release of cytochrome c; activation of caspase-9, caspase-7 and caspase-3; and cleavage of PARP in 3D-treated cells. This compound was found to have a significant effect on the inhibition of antiapoptotic proteins Bcl2 and BclxL. The results further demonstrate that 3D inhibits JAK2-STAT3 pathway by decreasing the constitutive and IL-6-induced phosphorylation of STAT3. 3D also decreases STAT3 target genes such as cyclin D1 and survivin. Furthermore, a combination study of 3D with doxorubicin (Dox) also showed more potent effects than single treatment of Dox in the inhibition of cell viability.

    Conclusion: Taken together, these findings indicate that 3D induces ROS-mediated apoptosis and inhibits JAK2-STAT3 signaling in CRC.

    Matched MeSH terms: Caspase 7
  19. Inayat-Hussain SH, Osman AB, Din LB, Ali AM, Snowden RT, MacFarlane M, et al.
    FEBS Lett., 1999 Aug 13;456(3):379-83.
    PMID: 10462048
    Goniothalamin, a plant styrylpyrone derivative isolated from Goniothalamus andersonii, induced apoptosis in Jurkat T-cells as assessed by the externalisation of phosphatidylserine. Immunoblotting showed processing of caspases-3 and -7 with the appearance of their catalytically active large subunits of 17 and 19 kDa, respectively. Activation of these caspases was further evidenced by detection of poly(ADP-ribose) polymerase cleavage (PARP). Pre-treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) blocked apoptosis and the resultant cleavage of these caspases and PARP. Our results demonstrate that activation of at least two effector caspases is a key feature of goniothalamin-induced apoptosis in Jurkat T-cells.
    Matched MeSH terms: Caspase 7
  20. Ahmad R, Vaali-Mohammed MA, Elwatidy M, Al-Obeed O, Al-Khayal K, Eldehna WM, et al.
    Int J Mol Med, 2019 Jul 23.
    PMID: 31364730 DOI: 10.3892/ijmm.2019.4284
    The emergence of colorectal cancer in developed nations can be attributed to dietary habits, smoking, a sedentary lifestyle and obesity. Several treatment regimens are available for primary and metastatic colorectal cancer; however, these treatment options have had limited impact on cure and disease‑free survival, and novel agents need to be developed for treating colorectal cancer. Thus, the objective of this study was to explore the anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide. The compound's inhibitory effect on cell proliferation was determined using the MTT assay and the xCelligence RTDP machine. Alternations in the expression of Bcl‑2 and inhibitor of apoptosis protein families were detected by western blotting. Apoptotic marker protein expression, including cytochrome c and cleaved poly(ADP‑ribose)polymerase was measured in the cytosolic extract of cells. Apoptosis and necrosis were detected by flow cytometry and immunofluorescence. Reactive oxygen species (ROS), and activation of caspase‑3 and caspase‑7 were measured using flow cytometry. Activation of the JNK pathway was detected by western blotting. We investigated the molecular mechanism of action of the sulfonamide derivative on colorectal cancer cells and found that the compound possesses a potent anticancer effect, which is primarily exerted by inducing apoptosis and necrosis. Interestingly, this compound exhibited little antiproliferative effect against the normal colonic epithelial cell line FHC. Furthermore, our results showed that the compound could significantly increase ROS production. Apoptosis induction could be attenuated by the free oxygen radical scavenger N‑acetyl cysteine (NAC), indicating that the antiproliferative effect of this compound on colorectal cancer cells is at least partially dependent on the redox balance. In addition, JNK signaling was activated by treatment with this derivative, which led to the induction of apoptosis. On the contrary, a JNK inhibitor could suppress the cell death induced by this compound. Our findings thus suggested a novel anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide for colorectal cancer cells and may have therapeutic potential for the treatment of colorectal cancer; however, further investigation is required.
    Matched MeSH terms: Caspase 7
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links