Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Arumugham T, K R, Hasan SW, Show PL, Rinklebe J, Banat F
    Chemosphere, 2021 May;271:129525.
    PMID: 33445028 DOI: 10.1016/j.chemosphere.2020.129525
    Recently, supercritical fluid CO2 extraction (SFE) has emerged as a promising and pervasive technology over conventional extraction techniques for various applications, especially for bioactive compounds extraction and environmental pollutants removal. In this context, temperature and pressure regulate the solvent density and thereby effects the yield, selectivity, and biological/therapeutic properties of the extracted components. However, the nature of plant matrices primarily determines the extraction mechanism based on either density or vapor pressure. The present review aims to cover the recent research and developments of SFE technique in the extraction of bioactive plant phytochemicals with high antioxidant, antibacterial, antimalarial, and anti-inflammatory activities, influencing parameters, process conditions, the investigations for improving the yield and selectivity. In another portion of this review focuses on the ecotoxicology and toxic metal recovery applications. Nonpolar properties of Sc-CO2 create strong solvent strength via distinct intermolecular interaction forces with micro-pollutants and toxic metal complexes. This results in efficient removal of these contaminants and makes SFE technology as a superior alternative for conventional solvent-based treatment methods. Moreover, a compelling assessment on the therapeutic, functional, and solvent properties of SFE is rarely focused, and hence this review would add significant value to the SFE based research studies. Furthermore, we mention the limitations and potential of future perspectives related to SFE applications.
    Matched MeSH terms: Chromatography, Supercritical Fluid*
  2. Akanda MJ, Sarker MZ, Ferdosh S, Manap MY, Ab Rahman NN, Ab Kadir MO
    Molecules, 2012 Feb 10;17(2):1764-94.
    PMID: 22328076 DOI: 10.3390/molecules17021764
    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  3. Al-Maqtari QA, Al-Ansi W, Mahdi AA, Al-Gheethi AAS, Mushtaq BS, Al-Adeeb A, et al.
    Environ Sci Pollut Res Int, 2021 May;28(20):25479-25492.
    PMID: 33462691 DOI: 10.1007/s11356-021-12346-6
    Artemisia arborescens, Artemisia abyssinica, Pulicaria jaubertii, and Pulicaria petiolaris are fragrant herbs traditionally used in medication and as a food seasoning. To date, there are no studies on the use of supercritical fluids extraction with carbon dioxide (SFE-CO2) on these plants. This study evaluates and compares total phenolic content (TPC), antioxidant activity by DPPH• and ABTS•+, antibacterial, and anti-biofilm activities of SFE-CO2 extracts. Extraction was done by SFE-CO2 with 10% ethanol as a co-solvent. A. abyssinica extract had the highest extraction yield (8.9% ± 0.41). The GC/MS analysis of volatile compounds identified 307, 265, 213, and 201compounds in A. abyssinica, A. arborescens, P. jaubertii, and P. petiolaris, respectively. The P. jaubertii extract had the highest TPC (662.46 ± 50.93 mg gallic acid equivalent/g dry extract), antioxidant activity (58.98% ± 0.20), and antioxidant capacity (71.78 ± 1.84 mg Trolox equivalent/g dry extract). The A. abyssinica and P. jaubertii extracts had significantly higher antimicrobial activity and were more effective against Gram-positive bacteria. B. subtilis was the most sensitive bacterium. P. aeruginosa was the most resistant bacterium. P. jaubertii extract had the optimum MIC and MBC (0.4 mg/ml) against B. subtilis. All SFE-CO2 extracts were effective as an anti-biofilm formation for all tested bacteria at 1/2 MIC. Meanwhile, P. jaubertii and P. petiolaris extracts were effective anti-biofilm for most tested bacteria at 1/16 MIC. Overall, the results indicated that the SFE-CO2 extracts of these plants are good sources of TPC, antioxidants, and antibacterial, and they have promising applications in the industrial fields.
    Matched MeSH terms: Chromatography, Supercritical Fluid*
  4. Lim S, Lee KT
    Bioresour Technol, 2013 Aug;142:121-30.
    PMID: 23735793 DOI: 10.1016/j.biortech.2013.05.010
    In this study, optimization of supercritical reactive extraction directly from Jatropha seeds in a high pressure batch reactor using Response Surface Methodology (RSM) coupled with Central Composite Rotatable Design (CCRD) was performed. Four primary variables (methanol to solid ratio (SSR), reaction temperature, time and CO2 initial pressure) were investigated under the proposed constraints. It was found that all variables had significant effects towards fatty acid methyl esters (FAME) yield. Moreover, three interaction effects between the variables also played a major role in influencing the final FAME yield. Optimum FAME yield at 92.0 wt.% was achieved under the following conditions: 5.9 SSR, 300°C, 12.3 min and 20 bar CO2. Final FAME product was discovered to fulfil existing international standard. Preliminary characterization analysis proved that the solid residue can be burnt as solid fuel in the form of biochar while the liquid product can be separated as specialty chemicals or burned as bio-oil for energy production.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  5. Sarker MZ, Selamat J, Habib AS, Ferdosh S, Akanda MJ, Jaffri JM
    Int J Mol Sci, 2012;13(9):11312-22.
    PMID: 23109854 DOI: 10.3390/ijms130911312
    Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO(2)). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO(2) extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  6. Han NM, May CY, Ngan MA, Hock CC, Ali Hashim M
    J Chromatogr Sci, 2005 3 17;42(10):536-9.
    PMID: 15768840
    Crude palm oil contains 600 to 1000 ppm of tocols in the form of tocopherols and tocotrienols. These palm tocols have been isolated and analyzed in the past by various chromatographic techniques such as open column chromatography, high-performance liquid chromatography, as well as thin-layer chromatography. Supercritical fluid chromatography (SFC) has emerged as a more advanced chromatographic technique in recent years. The tocols present in palm oil are successfully isolated using SFC. Identification of these tocols is supported by various spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectrometry.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  7. Norhidayah, S., Baharin, B.S., Hamed, M., Zaidul, I.S.M.
    MyJurnal
    The objective of this research is recovery of squalene from palm fatty acid distillate (PFAD) using supercritical fluid extraction (SFE). The extraction process was performed by using the SFE and recovered squalene was analyzed from total lipid extracts using HPLC. A central composite design was used to study the effect of SFE variables namely pressure (X₁) from 200 to 400 bar and temperature (X₂) from 40 to 60⁰C on the total lipid extracts (Y₁) and squalene concentration (Y₂) and optimize the SFE conditions. The nonlinear regression equations were significantly (p < 0.05) fitted for both responses with high R₂ (> 0.965), which had no indication of lack of fit. The results indicated that a combined pressure (200 bar) and temperature (50⁰C) was predicted to provide the optimum region in terms of total lipid extracts (13.84 ± 0.52%) and squalene concentration (418.31 ± 18.40 ppm) studied.
    Matched MeSH terms: Chromatography, Supercritical Fluid
  8. Jamilah, B., Abdulkadir Gedi, M., Suhaila, M., Md.Zaidul, I.S.
    MyJurnal
    The extraction of phenolics from Citrus hystrix leaf was carried out using supercritical fluid extraction and was optimized using response surface methodology (RSM). The effects of CO2 flow rate, extraction pressure and extraction temperature on yield, total phenolic content and diphenyl-picrylhydrazyl-IC50 were evaluated and compared with ethanol extraction. The extraction pressure was the most significant factor affecting the yield, TPC and DPPH-IC50 of the extracts, followed by CO2 flow rate and the extraction temperature. The optimum conditions of pressure, CO2 flow rate and temperature were at 267 bars, 18 g/min and 50°C, respectively. The yield, TPC and DPPH-IC50 obtained were 5.06%, 116.53 mg GAE/g extract and IC50 of 0.063 mg/ml, respectively. These values were not significantly different (p
    Matched MeSH terms: Chromatography, Supercritical Fluid
  9. Mohammed NK, Abd Manap MY, Tan CP, Muhialdin BJ, Alhelli AM, Meor Hussin AS
    PMID: 27642353 DOI: 10.1155/2016/6273817
    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE.
    Matched MeSH terms: Chromatography, Supercritical Fluid
  10. Radzali SA, Baharin BS, Othman R, Markom M, Rahman RA
    J Oleo Sci, 2014;63(8):769-77.
    PMID: 25007745
    In recent years, astaxanthin is claimed to have a 10 times higher antioxidant activity than that of other carotenoids such as lutein, zeaxanthin, canthaxanthin, and β-carotene; the antioxidant activity of astaxanthin is 100 times higher than that of α-tocopherol. Penaeus monodon (tiger shrimp) is the largest commercially available shrimp species and its waste is a rich source of carotenoids such as astaxanthin and its esters. The efficient and environment-friendly recovery of astaxanthins was accomplished by using a supercritical fluid extraction (SFE) technique. The effects of different co-solvents and their concentrations on the yield and composition of the extract were investigated. The following co-solvents were studied prior to the optimization of the SFE technique: ethanol, water, methanol, 50% (v/v) ethanol in water, 50% (v/v) methanol in water, 70% (v/v) ethanol in water, and 70% (v/v) methanol in water. The ethanol extract produced the highest carotenoid yield (84.02 ± 0.8 μg/g) dry weight (DW) with 97.1% recovery. The ethanol extract also produced the highest amount of the extracted astaxanthin complex (58.03 ± 0.1 μg/g DW) and the free astaxanthin content (12.25 ± 0.9 μg/g DW) in the extract. Lutein and β-carotene were the other carotenoids identified. Therefore, ethanol was chosen for further optimization studies.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  11. Uddin MS, Sarker MZ, Ferdosh S, Akanda MJ, Easmin MS, Bt Shamsudin SH, et al.
    J Sci Food Agric, 2015 May;95(7):1385-94.
    PMID: 25048690 DOI: 10.1002/jsfa.6833
    Phytosterols provide important health benefits: in particular, the lowering of cholesterol. From environmental and commercial points of view, the most appropriate technique has been searched for extracting phytosterols from plant matrices. As a green technology, supercritical fluid extraction (SFE) using carbon dioxide (CO2) is widely used to extract bioactive compounds from different plant matrices. Several studies have been performed to extract phytosterols using supercritical CO2 (SC-CO2) and this technology has clearly offered potential advantages over conventional extraction methods. However, the efficiency of SFE technology fully relies on the processing parameters, chemistry of interest compounds, nature of the plant matrices and expertise of handling. This review covers SFE technology with particular reference to phytosterol extraction using SC-CO2. Moreover, the chemistry of phytosterols, properties of supercritical fluids (SFs) and the applied experimental designs have been discussed for better understanding of phytosterol solubility in SC-CO2.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  12. Siddique BM, Ahmad A, Alkarkhi AF, Ibrahim MH, K MO
    J Food Sci, 2011 May;76(4):C535-42.
    PMID: 22417332 DOI: 10.1111/j.1750-3841.2011.02146.x
    Candlenut oil was extracted using supercritical CO(2) (SC-CO(2)) with an optimization of parameters, by the response surface methodology. The ground candlenut samples were treated in 2 different ways, that is, dried in either a heat oven (sample moisture content of 2.91%) or dried in a vacuum oven (sample moisture content of 1.98%), before extraction. An untreated sample (moisture content of 4.87%) was used as a control. The maximum percentage of oil was extracted from the heat-oven-dried sample (77.27%), followed by the vacuum-oven-dried sample (74.32%), and the untreated sample (70.12%). At an SC-CO(2) pressure of 48.26 Mpa and 60 min of extraction time, the optimal temperatures for extraction were found to be 76.4 °C, 73.9 °C, and 70.6 °C for the untreated, heat-oven-dried, and vacuum-oven-dried samples, respectively. The heat-oven-dried sample contains the highest percentage of linoleic acid, followed by the untreated and vacuum-oven-dried samples. The antiradical activity of candlenut oil corresponded to an IC(50) value of 30.37 mg/mL.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  13. Lim S, Hoong SS, Teong LK, Bhatia S
    Bioresour Technol, 2010 Sep;101(18):7180-3.
    PMID: 20395131 DOI: 10.1016/j.biortech.2010.03.134
    The novel biodiesel production technology using supercritical reactive extraction from Jatropha curcas L. oil seeds in this study has a promising role to fill as a more cost-effective processing technology. Compared to traditional biodiesel production method, supercritical reactive extraction can successfully carry out the extraction of oil and subsequent esterification/transesterification process to fatty acid methyl esters (FAME) simultaneously in a relatively short total operating time (45-80 min). Particle size of the seeds (0.5-2.0 mm) and reaction temperature/pressure (200-300 degrees C) are two primary factors being investigated. With 300 degrees C reaction temperature, 240 MPa operating pressure, 10.0 ml/g methanol to solid ratio and 2.5 ml/g of n-hexane to seed ratio, optimum oil extraction efficiency and FAME yield can reach up to 105.3% v/v and 103.5% w/w, respectively which exceeded theoretical yield calculated based on n-hexane Soxhlet extraction of Jatropha oil seeds.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  14. Choo YM, Ng MH, Ma AN, Chuah CH, Hashim MA
    Lipids, 2005 Apr;40(4):429-32.
    PMID: 16028723
    The application of supercritical fluid chromatography (SFC) coupled with a UV variable-wavelength detector to isolate the minor components (carotenes, vitamin E, sterols, and squalene) in crude palm oil (CPO) and the residual oil from palm-pressed fiber is reported. SFC is a good technique for the isolation and analysis of these compounds from the sources mentioned. The carotenes, vitamin E, sterols, and squalene were isolated in less than 20 min. The individual vitamin E isomers present in palm oil were also isolated into their respective components, alpha-tocopherol, alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol. Calibration of all the minor components of palm as well as the individual components of palm vitamin E was carried out and was found to be comparable to those analyzed by other established analytical methods.
    Matched MeSH terms: Chromatography, Supercritical Fluid*
  15. Memon AH, Hamil MS, Laghari M, Rithwan F, Zhari S, Saeed MA, et al.
    J Zhejiang Univ Sci B, 2016 Sep;17(9):683-982.
    PMID: 27604860 DOI: 10.1631/jzus.B1600019
    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  16. Zainuddin MF, Fai CK, Ariff AB, Rios-Solis L, Halim M
    Microorganisms, 2021 Jan 27;9(2).
    PMID: 33513696 DOI: 10.3390/microorganisms9020251
    The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and "green" solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
    Matched MeSH terms: Chromatography, Supercritical Fluid
  17. Mohammad Rashedi Ismail-Fitry, Safiullah Jauhar, Chong, Gun Hean, Mahmud Ab Rashid NorKhaizura, Wan Zunairah Wan Ibadullah
    MyJurnal
    Recently natural polyphenol compounds (PCs) of plants, gained wide consideration of
    scientists, companies and public people because of its unique pharmaceutical and
    preservative benefits in the physiological system. They can prevent mortal and serious
    diseases such as cancer, cardiovascular and Alzheimer. However, defining a suitable
    source of PCs and their proper, economic and efficient extraction method are still a
    challenge. The aim of this study was to review PCs as an important antioxidant, the
    significance of pomegranate as a source of natural PCs and its application in meat and
    meat product. This study also covers different types of PCs extraction methods such as
    solid-liquid extraction (SLE) method as a conventional extraction which using Soxhlet
    apparatus and several solvents and advanced methods such as microwave-assisted
    extraction (MAE), supercritical fluid extraction (SFE), accelerated solvent extraction
    (ASE), ultrasound-assisted extraction (UAE) and high hydrostatic pressure extraction
    (HHPE). Simple and developed analytical method of PCs is also reviewed in the study.
    SLE method is an easy and simple method but, it uses lots of chemicals and is not
    suitable for all kinds of PCs extraction. UAE is using for quick extraction PCs, SFE is green
    extraction method uses less solvent and have a good result but it needs high
    technology. ASE method is a proper alternative for Soxhlet extraction method for its
    quick result. MAE method has high extraction result but is not suitable for some
    thermolabile PCs. Several parts of pomegranate showed antioxidant and antimicrobial
    traits for shelf life extension of meat and meat product. Pomegranate peel is the
    strongest antioxidant followed by pomegranate juice and seed. Pomegranate peel
    prolonged chilled chicken meat shelf live up to three weeks.
    Matched MeSH terms: Chromatography, Supercritical Fluid
  18. Mohamad N, Ramli N, Abd-Aziz S, Ibrahim MF
    3 Biotech, 2019 Jun;9(6):234.
    PMID: 31139549 DOI: 10.1007/s13205-019-1767-8
    Pineapple peel is a potential feedstock for the extraction of essential oil due to the presence of aromatic compounds. To extract the essential oil from pineapple peels, three different methods were applied, i.e., (1) hydro-distillation (HD); (2) hydro-distillation with enzyme-assisted (HDEA); and (3) supercritical fluid extraction (SFE). SFE had successfully produced an essential oil with the yield of 0.17% (w/w) together with 0.64% (w/w) of concrete, whereby the HD and HDEA had only produced hydrosols with the yield of 70.65% (w/w) and 80.65% (w/w), respectively. Parameters' optimization for HD (substrate to solvent ratio, temperature, and extraction duration) and HDEA (cellulase loading and incubation duration) significantly affected the hydrosol yield, but did not extract out the essential oil. This is because only SFE had successfully ruptured the oil gland after observed under the scanning electron microscope. The essential oil obtained from SFE composed of mainly propanoic acid ethyl ester (40.25%), lactic acid ethyl ester (19.35%), 2-heptanol (15.02%), propanol (8.18%), 3-hexanone (2.60%), and butanoic acid ethyl ester (1.58%). In overall, it can be concluded that the SFE had successfully extracted the essential oil as compared to the HD and HDEA methods.
    Matched MeSH terms: Chromatography, Supercritical Fluid
  19. Karim FT, Ghafoor K, Ferdosh S, Al-Juhaimi F, Ali E, Yunus KB, et al.
    J Food Drug Anal, 2017 Jul;25(3):654-666.
    PMID: 28911651 DOI: 10.1016/j.jfda.2016.11.017
    In order to improve the encapsulation process, a newly supercritical antisolvent process was developed to encapsulate fish oil using hydroxypropyl methyl cellulose as a polymer. Three factors, namely, temperature, pressure, and feed emulsion rate were optimized using response surface methodology. The suitability of the model for predicting the optimum response value was evaluated at the conditions of temperature at 60°C, pressure at 150 bar, and feed rate at 1.36 mL/min. At the optimum conditions, particle size of 58.35 μm was obtained. The surface morphology of the micronized fish oil was also evaluated using field emission scanning electron microscopy where it showed that particles formed spherical structures with no internal voids. Moreover, in vitro release of oil showed that there are significant differences of release percentage of oil between the formulations and the results proved that there was a significant decrease in the in vitro release of oil from the powder when the polymer concentration was high.
    Matched MeSH terms: Chromatography, Supercritical Fluid
  20. Orio L, Alexandru L, Cravotto G, Mantegna S, Barge A
    Ultrason Sonochem, 2012 May;19(3):591-5.
    PMID: 22054912 DOI: 10.1016/j.ultsonch.2011.10.001
    Mitragyna speciosa, a tropical plant indigenous to Southeast Asia, is well known for its psychoactive properties. Its leaves are traditionally chewed by Thai and Malaysian farmers and manual labourers as it causes a numbing, stimulating effect. The present study aims to evaluate alkaloid yield and composition in the leaf extracts. For this purpose we have compared several non-conventional extraction techniques with classic procedures (room temperature or under heating). Dried M. speciosa leaves belonging to three batches of different origin (from Thailand, Malaysia and Indonesia) were extracted using ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical carbon dioxide extraction SFE-CO(2), using methanol, ethanol, water and binary mixtures. The extracts were compared using an HPLC/ESI-MS analysis of mitragynine and four other related alkaloids which were present in the alkaloid fraction. The extraction technique influences both the raw product yield and the relative alkaloid content of M. speciosa leaves. Of the several methods tested, MAE in a closed vessel at 110 °C (60 W, methanol/water 1:1) gave the highest alkaloid fraction amount, while UAE with an immersion horn at 25 °C (21.4 kHz, 50 W, methanol) showed the best yield for mitragynine. This work may prove to be a useful contribution to forensic, toxicological and pharmacognosy studies. Although the potential applications of M. speciosa alkaloids clearly need further investigation, these results may facilitate the scaling-up of their extraction.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links