Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Saputra R, Walvekar R, Khalid M, Mubarak NM, Sillanpää M
    Chemosphere, 2021 Feb;265:129033.
    PMID: 33250228 DOI: 10.1016/j.chemosphere.2020.129033
    Vulcanized rubber, due to its superior mechanical properties, has long been used in various industries, especially automotive. The rubber industry has evolved and expanded over the years to meet the increasing global demands for tires. Today tires consist of about 19% natural rubber and 24% synthetic rubber, while plastic polymer and metal, filler and additives make up the rest. Over 1.6 billion new tires are produced annually and around 1 billion waste tires are generated. Tires are extensively designed with several complex processes to make them virtually indestructible. Since tire rubber does not decompose easily, their disposal at the end of service life creates a monumental environmental impact. However, waste tire rubber (WTR) consist of valuable rubber hydrocarbon, making its recovery or regeneration highly desirable. The conventional recovery method of WTR tends to produce undesirable products due to the destruction of the polymeric chain and exponentially degenerates the vulcanizates' physical properties. Since then, multiple devulcanization processes were introduced to effectively and selectively cleave vulcanizate's crosslinks while retaining the polymeric networks. Different devulcanization methods such as chemical, mechanical, irradiation, biological and their combinations that have been explored until now are reviewed here. Besides, an overview of the latest development of devulcanization by ionic liquids and deep eutectic solvents are also described. While such devulcanization technique provides new sustainability pathway(s) for WTR, the generated devulcanizate also possesses comparable physical properties to that of virgin products. This further opens the possibility of novel circular economic opportunities worldwide.
    Matched MeSH terms: Elastomers*
  2. Ghani, S.H.A.
    Ann Dent, 1996;3(1):-.
    MyJurnal
    Fixed-removable appliance is frequently used to extrude a tooth but the idea of incorporating an acrylic capping or stop has not been documented in the literature. This article reports on a case treated with this new approach and describes the technique used.
    Matched MeSH terms: Silicone Elastomers
  3. Chieh, C.W., Asmawi Sanuddin, Reza Afshar, Aidy Ali
    MyJurnal
    The paper presents a simulation work conducted on the elastomer subjected to cyclic loads. A 3D finite element model of elastomer specimen, in accordance to ASTM D412, was developed using CATIA and ANSYS commercial finite element (FEM) packages. Fatigue life predicted from the simulation was compared with well-documented published data and it showed an acceptable agreement. Meanwhile, the simulated strain-life results are slightly lower than the experimental data. Several factors which potentially influenced the variations of the results were noted. Finally, some recommendations are offered at the end of this study to further improve the simulation
    Matched MeSH terms: Elastomers
  4. Ismail R
    Data Brief, 2019 Aug;25:104166.
    PMID: 31516921 DOI: 10.1016/j.dib.2019.104166
    Generally, a base isolator is made up of alternate layers of steel and rubber. The idea of adopting magnetoreological elastomers (MREs) in base isolator systems was introduced in the past few years in order to improve the efficiency of base isolator systems. The article provides information on the mechanical corresponding to different carbon black loading loadings of 20 parts per hundred rubber (pphr), 40 pphr and 60 pphr in natural rubber compound. The mechanical dataset described the data from tensile, hardness and rebound test.
    Matched MeSH terms: Elastomers
  5. Khairi MHA, Fatah AYA, Mazlan SA, Ubaidillah U, Nordin NA, Ismail NIN, et al.
    Int J Mol Sci, 2019 Aug 21;20(17).
    PMID: 31438576 DOI: 10.3390/ijms20174085
    The existing mold concept of fabricating magnetorheological elastomer (MRE) tends to encounter several flux issues due to magnetic flux losses inside the chamber. Therefore, this paper presents a new approach for enhancing particle alignment through MRE fabrication as a means to provide better rheological properties. A closed-loop mold, which is essentially a fully guided magnetic field inside the chamber, was designed in order to strengthen the magnetic flux during the curing process with the help of silicone oil (SO) plasticizers. The oil serves the purpose of softening the matrix. Scanning electron microscopy (SEM) was used to observe the surface morphology of the fabricated MRE samples. The field-dependent dynamic properties of the MREs were measured several ways using a rheometer, namely, strain sweep, frequency sweep, and magnetic field sweep. The analysis implied that the effectiveness of the MRE was associated with the use of the SO, and the closed-loop mold helped enhance the absolute modulus up to 0.8 MPa. The relative magnetorheological (MR) effects exhibited high values up to 646%. The high modulus properties offered by the MRE with SO are believed to be potentially useful in industry applications, particularly as vibration absorbers, which require a high range of stiffness.
    Matched MeSH terms: Elastomers/chemistry*
  6. Huong KH, Azuraini MJ, Aziz NA, Amirul AA
    J Biosci Bioeng, 2017 Jul;124(1):76-83.
    PMID: 28457658 DOI: 10.1016/j.jbiosc.2017.02.003
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] copolymer receives attention as next generation biomaterial in medical application. However, the exploitation of the copolymer is still constrained since such copolymer has not yet successfully been performed in industrial scale production. In this work, we intended to establish pilot production system of the copolymer retaining the copolymer quality which has recently discovered to have novel characteristic from lab scale fermentation. An increase of agitation speed has significantly improved the copolymer accumulation efficiency by minimizing the utilization of substrates towards cell growth components. This is evidenced by a drastic increase of PHA content from 28 wt% to 63 wt% and PHA concentration from 3.1 g/L to 6.5 g/L but accompanied by the reduction of residual biomass from 8.0 g/L to 3.8 g/L. Besides, fermentations at lower agitation and aeration have resulted in reduced molecular weight and mechanical strength of the copolymer, suggesting the role of sufficient oxygen supply efficiency in improving the properties of the resulting copolymers. The KLa-based scale-up fermentation was performed successfully in maintaining the yield and the quality of the copolymers produced without a drastic fluctuation. This suggests that the scale-up based on the KLa values supported the fermentation system of P(3HB-co-4HB) copolymer production in single-stage using mixed-substrate cultivation strategy.
    Matched MeSH terms: Elastomers/metabolism*; Elastomers/chemistry*
  7. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Towler MR
    Mater Sci Eng C Mater Biol Appl, 2015 Aug;53:175-88.
    PMID: 26042705 DOI: 10.1016/j.msec.2015.04.035
    Biodegradable elastomers have clinical applicability due to their biocompatibility, tunable degradation and elasticity. The addition of bioactive glasses to these elastomers can impart mechanical properties sufficient for hard tissue replacement. Hence, a composite with a biodegradable polymer matrix and a bioglass filler can offer a method of augmenting existing tissue. This article reviews the applications of such composites for skeletal augmentation.
    Matched MeSH terms: Elastomers*
  8. Rahman AM, Jamayet NB, Nizami MMUI, Johari Y, Husein A, Alam MK
    J Prosthodont, 2019 Jan;28(1):36-48.
    PMID: 30043482 DOI: 10.1111/jopr.12950
    PURPOSE: This systematic review aims to identify and interpret results of studies that evaluated the changes in the physical properties of maxillofacial prosthetic materials (1) without aging, (2) after natural or artificial accelerated aging, and (3) after outdoor weathering.

    METHODS: Relevant articles written in English only, before January 15, 2017, were identified using an electronic search in the PubMed, Scopus, and Google Scholar databases. Furthermore, a manual search of the related major journals was also conducted to identify more pertinent articles. The relevancy of the articles was verified by screening the title, abstract, and full text if they met the inclusion criteria. A total of 37 articles satisfied the criteria, from which data were extracted for qualitative synthesis.

    RESULTS: Among the 37 included articles, 14 were without aging, 15 were natural or artificial accelerated aging, 7 were outdoor weathering, and 1 contained both artificial aging and outdoor weathering. Only 4 studies out of the 14 without aging had significant observations; whereas 9 articles with natural or artificial aging published significant results, and 3 out of 7 outdoor weathering articles showed significant changes in the evaluated silicone elastomers.

    CONCLUSIONS: Despite the varying research, it seems that the single "ideal" maxillofacial prosthetic material that can provide sufficient resistance against different aging conditions is yet to be identified. Therefore, it is imperative for standardization organizations, the scientific community, and academia to develop modified prosthetic silicones possessing improved physical properties and color stability, limiting the clinical problems regarding degradation of maxillofacial prostheses.

    Matched MeSH terms: Silicone Elastomers*
  9. Aziz SAA, Mazlan SA, Ubaidillah U, Mohamad N, Choi SB, Che Aziz MA, et al.
    Int J Mol Sci, 2020 Nov 27;21(23).
    PMID: 33260840 DOI: 10.3390/ijms21239007
    Engineering rubber composites have been widely used as main components in many fields including vehicle engineering and biomedical applications. However, when a rubber composite surface area is exposed to heat or sunlight and over a long-term accelerated exposure and lifecycle of test, the rubber becomes hard, thus influencing the mechanical and rheological behavior of the materials. Therefore, in this study, the deterioration of rheological characteristics particularly the phase shift angle (δ) of silicone rubber (SR) based magnetorheological elastomer (MRE) is investigated under the effect of thermal aging. SR-MRE with 60 wt% of CIPs is fabricated and subjected to a continuous temperature of 100 °C for 72 h. The characterization of SR-MRE before and after thermal aging related to hardness, micrograph, and rheological properties are characterized using low vacuum scanning electron microscopy (LV-SEM) and a rheometer, respectively. The results demonstrated that the morphological analysis has a rough surface and more voids occurred after the thermal aging. The hardness and the weight of the SR-MRE before and after thermal aging were slightly different. Nonetheless, the thermo-rheological results showed that the stress-strain behavior have changed the phase-shift angle (δ) of SR-MRE particularly at a high strain. Moreover, the complex mechanism of SR-MRE before and after thermal aging can be observed through the changes of the 'in-rubber structure' under rheological properties. Finally, the relationship between the phase-shift angle (δ) and the in-rubber structure due to thermal aging are discussed thoroughly which led to a better understanding of the thermo-rheological behavior of SR-MRE.
    Matched MeSH terms: Silicone Elastomers/chemistry*
  10. Al-Saleh MA, Yussuf AA, Al-Enezi S, Kazemi R, Wahit MU, Al-Shammari T, et al.
    Materials (Basel), 2019 Nov 27;12(23).
    PMID: 31783544 DOI: 10.3390/ma12233924
    In this research work, graphene nanoplatelets (GNP) were selected as alternative reinforcing nanofillers to enhance the properties of polypropylene (PP) using different compatibilizers called polypropylene grafted maleic anhydride (PP-g-MA) and ethylene-octene elastomer grafted maleic anhydride (POE-g-MA). A twin screw extruder was used to compound PP, GNP, and either the PP-g-MA or POE-g-MA compatibilizer. The effect of GNP loading on mechanical and thermal properties of neat PP was investigated. Furthermore, the influence and performance of different compatibilizers on the final properties, such as mechanical and thermal, were discussed and reported. Tensile, flexural, impact, melting temperature, crystallization temperature, and thermal stability were evaluated by using a universal testing system, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). For mechanical properties, it was found that increasing GNP content from 1 wt.% to 5 wt.% increased tensile strength of the neat PP up to 4 MPa. The influence of compatibilizers on the mechanical properties had been discussed and reported. For instance, the addition of PP-g-MA compatibilizer improved tensile strength of neat PP with GNP loading. However, the addition of compatibilizer POE-g-MA slightly decreased the tensile strength of neat PP. A similar trend of behavior was observed for flexural strength. For thermal properties, it was found that both GNP loading and compatibilizers have no significant influence on both crystallization and melting temperature of neat PP. For thermal stability, however, it was found that increasing the GNP loading had a significant influence on improving the thermal behavior of neat PP. Furthermore, the addition of compatibilizers into the PP/GNP nanocomposite had slightly improved the thermal stability of neat PP.
    Matched MeSH terms: Silicone Elastomers; Elastomers
  11. Yang T, Xiao Y, Zhang Z, Liang Y, Li G, Zhang M, et al.
    Sci Rep, 2018 09 28;8(1):14518.
    PMID: 30266999 DOI: 10.1038/s41598-018-32757-9
    Soft robots driven by stimuli-responsive materials have their own unique advantages over traditional rigid robots such as large actuation, light weight, good flexibility and biocompatibility. However, the large actuation of soft robots inherently co-exists with difficulty in control with high precision. This article presents a soft artificial muscle driven robot mimicking cuttlefish with a fully integrated on-board system including power supply and wireless communication system. Without any motors, the movements of the cuttlefish robot are solely actuated by dielectric elastomer which exhibits muscle-like properties including large deformation and high energy density. Reinforcement learning is used to optimize the control strategy of the cuttlefish robot instead of manual adjustment. From scratch, the swimming speed of the robot is enhanced by 91% with reinforcement learning, reaching to 21 mm/s (0.38 body length per second). The design principle behind the structure and the control of the robot can be potentially useful in guiding device designs for demanding applications such as flexible devices and soft robots.
    Matched MeSH terms: Elastomers
  12. Ch'ng SY, Andriyana A, Tee YL, Verron E
    Materials (Basel), 2015 Mar 02;8(3):884-898.
    PMID: 28787977 DOI: 10.3390/ma8030884
    The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material's ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored.
    Matched MeSH terms: Elastomers
  13. Goh TH, Puvan IS, Wong WP, Sivanesaratnam V, Sinnathuray TA
    Int. J. Fertil., 1981;26(2):116-9.
    PMID: 6114062
    The menstrual patterns of 281 women undergoing laparoscopic sterilization with silastic rings were studied prospectively. A significant increase in dysmenorrhea and irregular periods was seen soon after sterilization but this was transient, returning to presterilization levels by 12 months. Menorrhagia was not observed and the amount of menstrual blood loss showed a trend towards normal following sterilization. No permanent adverse effects on menstrual patterns were seen in the 1st year after sterilization. It is suggested that factors other than the sterilization procedure may be responsible for the high prevalence of menstrual dysfunction that has been reported following sterilization.
    Matched MeSH terms: Silicone Elastomers*
  14. Yunus NA, Mazlan SA, Ubaidillah, Abdul Aziz SA, Tan Shilan S, Abdul Wahab NA
    Int J Mol Sci, 2019 Feb 10;20(3).
    PMID: 30744210 DOI: 10.3390/ijms20030746
    Determination of the thermal characteristics and temperature-dependent rheological properties of the magnetorheological elastomers (MREs) is of paramount importance particularly with regards to MRE applications. Hitherto, a paucity of temperature dependent analysis has been conducted by MRE researchers. In this study, an investigation on the thermal and rheological properties of epoxidized natural rubber (ENR)-based MREs was performed. Various percentages of carbonyl iron particles (CIPs) were blended with the ENR compound using a two roll-mill for the preparation of the ENR-based MRE samples. The morphological, elemental, and thermal analyses were performed before the rheological test. Several characterizations, as well as the effects of the strain amplitude, temperature, and magnetic field on the rheological properties of ENR-based MRE samples, were evaluated. The micrographs and elemental results were well-correlated regarding the CIP and Fe contents, and a uniform distribution of CIPs was achieved. The results of the thermal test indicated that the incorporation of CIPs enhanced the thermal stability of the ENR-based MREs. Based on the rheological analysis, the storage modulus and loss factor were dependent on the CIP content and strain amplitude. The effect of temperature on the rheological properties revealed that the stiffness of the ENR-based MREs was considered stable, and they were appropriate to be employed in the MRE devices exposed to high temperatures above 45 °C.
    Matched MeSH terms: Elastomers/chemistry*
  15. Nor Azura Abdul Rahim, Zulkifli Mohamad Ariff, Azlan Ariffin
    MyJurnal
    A study of kaolin addition in polypropylene (PP-kaolin) melt was carried out to characterize its flow behaviour and viscoelasticity at different temperatures. The compound of 20 wt% kaolin was prepared by melt mixing using two roll-mill heated at 185°C, while the compounded composites were put through a single screw extruder to evaluate its melt flow properties. The prepared PPKaolin composites exhibited a shear thinning behaviour and appeared to be strongly dependent on temperature. Moreover, it was also found that the power law index was constantly increased as the temperature increased. Meanwhile, a similar trend was observed for swelling ratio, whereby it also increased with increasing temperature. It was also observed that changes in the die temperatures would result in the formation of obvious bubble like surface morphology, and it became more prominent when the temperature was lowered.
    Matched MeSH terms: Silicone Elastomers
  16. Nor Faekah I, Fatihah S, Mohamed ZS
    Heliyon, 2020 Mar;6(3):e03594.
    PMID: 32258460 DOI: 10.1016/j.heliyon.2020.e03594
    A bench-scale model of a partially packed upflow anaerobic fixed film (UAF) reactor was set up and operated at five different hydraulic retention times (HRTs) of (17, 14, 10, 8, and 5) days. The reactor was fed with synthetic rubber wastewater consisting of a chemical oxygen demand (COD) concentration of 6355-6735 mg/L. The results were analyzed using the Monod model, the Modified Stover-Kincannon models, and the Grau Second-Order Model. The Grau Second-Order model was found to best fit the experimental data. The biokinetic constant values, namely the growth yield coefficient (Y) and the endogenous coefficient (Kd) were 0.027 g VSS/g COD and 0.1705 d-1, respectively. The half-saturation constant (Ks) and maximum substrate utilization rate (K) returned values of 84.1 mg/L and 0.371 d-1, respectively, whereas the maximum specific growth rate of the microorganism (μmax) was 0.011 d-1. The constants, Umax and KB, of the Stover-Kincannon model produced values of 6.57 g/L/d and 6.31 g/L/d, respectively. Meanwhile, the average second-order substrate removal rate, ks(2), was 105 d-1. These models gave high correlation coefficients with the value of R2 = 80-99% and these indicated that these models can be used in designing UAF reactor consequently predicting the behaviour of the reactor.
    Matched MeSH terms: Elastomers
  17. Huong KH, Teh CH, Amirul AA
    Int J Biol Macromol, 2017 Aug;101:983-995.
    PMID: 28373050 DOI: 10.1016/j.ijbiomac.2017.03.179
    This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via β-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, β, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, Mwof 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched.
    Matched MeSH terms: Elastomers/metabolism*; Elastomers/chemistry
  18. Balaji AB, Ratnam CT, Khalid M, Walvekar R
    J Biomater Appl, 2018 03;32(8):1049-1062.
    PMID: 29298552 DOI: 10.1177/0885328217750476
    The effect of electron beam radiation on ethylene-propylene diene terpolymer/polypropylene blends is studied as an attempt to develop radiation sterilizable polypropylene/ethylene-propylene diene terpolymer blends suitable for medical devices. The polypropylene/ethylene-propylene diene terpolymer blends with mixing ratios of 80/20, 50/50, 20/80 were prepared in an internal mixer at 165°C and a rotor speed of 50 rpm/min followed by compression molding. The blends and the individual components were radiated using 3.0 MeV electron beam accelerator at doses ranging from 0 to 100 kGy in air and room temperature. All the samples were tested for tensile strength, elongation at break, hardness, impact strength, and morphological properties. After exposing to 25 and 100 kGy radiation doses, 50% PP blend was selected for in vivo studies. Results revealed that radiation-induced crosslinking is dominating in EPDM dominant blends, while radiation-induced degradation is prevailing in PP dominant blends. The 20% PP blend was found to be most compatible for 20-60 kGy radiation sterilization. The retention in impact strength with enhanced tensile strength of 20% PP blend at 20-60 kGy believed to be associated with increased compatibility between PP and EPDM along with the radiation-induced crosslinking. The scanning electron micrographs of the fracture surfaces of the PP/EPDM blends showed evidences consistent with the above contentation. The in vivo studies provide an instinct that the radiated blends are safe to be used for healthcare devices.
    Matched MeSH terms: Elastomers/administration & dosage; Elastomers/chemistry*
  19. Khalaf S, Ariffin Z, Husein A, Reza F
    J Prosthodont, 2015 Jul;24(5):419-23.
    PMID: 25219956 DOI: 10.1111/jopr.12213
    PURPOSE: This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified.

    MATERIALS AND METHODS: A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05.

    RESULTS: Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers.

    CONCLUSIONS: Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold.

    Matched MeSH terms: Silicone Elastomers
  20. Lee, S.Y.
    MyJurnal
    Tapioca starch, poly(lactic acid) and Cloisite 10A nanocomposite foams were prepared by twin screw extrusion. Residence time distribution (RTD) in an extruder is a useful means of determining optimal processing conditions for mixing, cooking and shearing reactions during the process. RTD was obtained by inputting a pulse-like stimulus and measuring its profile at the exit or other point in the extruder. During processing, after the steady state had been reached, a fixed amount of tracer was instantaneously fed into the extruder and its concentration was measured from the samples collected at fixed time intervals in the extruder exit. The tracer concentration was the value of the redness, a* was used as a measure of red colour intensity of the concentration of tracer in the extrudate. Meanwhile, the effects of two screw configurations (compression and mixing screws) and two barrel temperatures (150 and 160ºC) on RTD of nanocomposite foams were also studied. The influences of screw configurations and barrel temperatures on RTD were analyzed using the mean residence time (MRT) and variance. Screw configurations and temperatures had significant effects (P
    Matched MeSH terms: Silicone Elastomers
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links