Displaying publications 1 - 20 of 167 in total

  1. Hew KS, Asis AJ, Tan TB, Yusoff MM, Lai OM, Nehdi IA, et al.
    Food Chem, 2020 Mar 01;307:125545.
    PMID: 31654951 DOI: 10.1016/j.foodchem.2019.125545
    Corresponding the high presence of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in refined palm oil, this paper re-evaluated degumming and bleaching processes of physical palm oil refining to reduce the amount of said contaminants. Separation-free water degumming was incorporated into the process, and this significantly (p 
    Matched MeSH terms: Esters/chemistry*
  2. Huang N, Radiman S, Chia C, Lim H, Khiew P, Chiu W, et al.
    Kobalt sulfida telah dihasilkan dengan kaedah pemendakan kimia di dalam kehadiran 0.1% ester sukrosa S1670s. Corak pembelauan sinar-x (XRD) menunjukkan kobalt sulfida yang dihasilkan mempunyai sifat amofos dan analisis sinar-x (EDX) menunjukkan kobalt sulfida yang terbentuk mempunyai nisbah atom Co: S dalam 1:1.08 iaitu CoS. CoS yang terbentuk mempunyai struktur liang bersaiz nano (~10 nm) apabila diperhatikan di bawah elektron mikroskop transmisi (TEM) dan disahkan oleh ujian penjerapan gas nitrogen (BET). Pembentukan struktur liang adalah disebabkan oleh struktur misel ester sukrosa yang mempunyai saiz misel dalam lingkungan 10 nm. CoS yang dihasilkan diuji keupayaan penjerapan dengan metilena biru sebagai sampel pewarna. Didapati keupayaan penjerapan optimum CoS ialah 110 mg/g dan pH yang paling sesuai untuk penjerapan berlaku adalah lebih daripada 6.
    Matched MeSH terms: Esters
  3. Keng PS, Basri M, Ariff AB, Abdul Rahman MB, Abdul Rahman RN, Salleh AB
    Bioresour Technol, 2008 Sep;99(14):6097-104.
    PMID: 18243690 DOI: 10.1016/j.biortech.2007.12.049
    Lipase-catalyzed production of palm esters by alcoholysis of palm oil with oleyl alcohol in n-hexane was performed in 2L stirred-tank reactor (STR). Investigation on the performance of reactor operation was carried out in batch mode STR with single impeller mounted on the centrally located shaft. Rushton turbine (RT) impellers provide the highest reaction yield (95.8%) at lower agitation speed as compared to AL-hydrofoil (AL-H) and 2-bladed elephant ear (EE) impellers. Homogenous enzyme particles suspension was obtained at 250 rpm by using RT impeller. At higher impeller speed, the shear effect on the enzyme particles caused by agitation has decreased the reaction performance. Palm esters reaction mixture in STR follows Newtons' law due to the linear relation between the shear stress (tau) and shear rate (dupsilon/dy). High stability of Lipozyme RM IM was observed as shown by its ability to be repeatedly used to give high percentage yield (79%) of palm esters even after 15 cycles of reaction. The process was successfully scale-up to 75 L STR (50 L working volume) based on a constant impeller tip speed approach, which gave the yield of 97.2% after 5h reaction time.
    Matched MeSH terms: Esters/metabolism*
  4. Low SY, Tan JY, Ban ZH, Siwayanan P
    J Oleo Sci, 2021 Aug 05;70(8):1027-1037.
    PMID: 34248098 DOI: 10.5650/jos.ess21078
    Liquid detergent has an increasing demand in North America, Western Europe, and Southeast Asia countries owing to its convenience to use and efficiency to clean. Alpha methyl ester sulfonates (α-MES), an anionic surfactant derived from palm oil based methyl ester, was reported to have lower manufacturing cost, good detergency with less dosage, excellent biodegradability, higher tolerance to hard water, and lower eco-toxicity as compared to linear alkylbenzene sulfonates (LABS). LABS was known as the workhorse of the detergent industry in the 20th century. Although palm-based α-MES was successfully used as the sole surfactant in powder detergent, there are still some unsettled technical issues related to phase stability and viscosity when using this anionic surfactant in heavy-duty laundry liquid detergent formulations. This paper will review not only the market overview of detergents, the application and performance of green surfactants in laundry detergents but also will highlight the technical issues related to the application of palm-based α-MES in laundry liquid detergent and some of the possible methods to overcome the formulation adversities.
    Matched MeSH terms: Esters/toxicity; Esters/chemistry; Sulfuric Acid Esters/toxicity; Sulfuric Acid Esters/chemistry
  5. Saik AY, Lim YY, Stanslas J, Choo WS
    Biotechnol Lett, 2017 Feb;39(2):297-304.
    PMID: 27812823 DOI: 10.1007/s10529-016-2246-5
    OBJECTIVES: To investigate the lipase-catalyzed acylation of quercetin with oleic acid using Candida antarctica lipase B.

    RESULTS: Three acylated analogues were produced: quercetin 4'-oleate (C33H42O8), quercetin 3',4'-dioleate (C51H74O9) and quercetin 7,3',4'-trioleate (C69H106O10). Their identities were confirmed with UPLC-ESI-MS and (1)H NMR analyses. The effects of temperature, duration and molar ratio of substrates on the bioconversion yields varied across conditions. The regioselectivity of the acylated quercetin analogues was affected by the molar ratio of substrates. TLC showed the acylated analogues had higher lipophilicity (152% increase) compared to quercetin. Partition coefficient (log P) of quercetin 4'-oleate was higher than those of quercetin and oleic acid. Quercetin 4'-oleate was also stable over 28 days of storage.

    CONCLUSIONS: Quercetin oleate esters with enhanced lipophilicity can be produced via lipase-catalyzed reaction using C. antarctica lipase B to be used in topical applications.

    Matched MeSH terms: Esters/metabolism*; Esters/chemistry
  6. Teo CL, Idris A
    Bioresour Technol, 2014 Dec;174:281-6.
    PMID: 25463809 DOI: 10.1016/j.biortech.2014.10.035
    Nannochloropsis sp. wet biomass was directly transesterified under microwave (MW) irradiation in the presence of methanol and various alkali and acid catalyst. Two different types of direct transesterification (DT) were used; one step and two step transesterification. The biodiesel yield obtained from the MWDT was compared with that obtained using conventional method (lipid extraction followed by transesterification) and water bath heating DT method. Findings revealed that MWDT efficiencies were higher compared to water bath heating DT by at least 14.34% and can achieve a maximum of 43.37% with proper selection of catalysts. The use of combined catalyst (NaOH and H2SO4) increased the yield obtained by 2.3-folds (water bath heating DT) and 2.87-folds (MWDT) compared with the one step single alkaline catalyst respectively. The property of biodiesel produced by MWDT has high lubricating property, good cetane number and short carbon chain FAME's compared with water bath heating DT.
    Matched MeSH terms: Esters/metabolism
  7. Khayoon MS, Olutoye MA, Hameed BH
    Bioresour Technol, 2012 May;111:175-9.
    PMID: 22405756 DOI: 10.1016/j.biortech.2012.01.177
    Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock.
    Matched MeSH terms: Esters/chemistry
  8. Kamil RN, Yusup S
    Bioresour Technol, 2010 Aug;101(15):5877-84.
    PMID: 20304636 DOI: 10.1016/j.biortech.2010.02.084
    A mathematical model describing chemical kinetics of transesterification of palm-based methyl esters with trimethylolpropane has been developed. The model was developed by utilizing nonlinear regression method, which is an efficient and powerful way to determine rate constants for both forward and reverse reactions. A comparison with previous study which excludes the reverse reactions was made. The model was based on the reverse mechanism of transesterification reactions and describes concentration changes of trimethylolpropane, monoesters and diesters production. The developed model was validated against data from the literature. The reaction rate constants were determined using MATLAB version 7.2 and the ratios of rate constants obtained were well in agreement with those reported in the literature. A good correlation between model simulations and experimental data was observed. It was proven that both methods were able to predict the rate constants with plausible accuracy.
    Matched MeSH terms: Esters/chemistry*
  9. Abd Maurad Z, Abdullah LC, Anuar MS, Abdul Karim Shah NN, Idris Z
    Molecules, 2020 Jun 05;25(11).
    PMID: 32516971 DOI: 10.3390/molecules25112629
    Methyl ester sulphonates (MES) have been considered as an alternative green surfactant for the detergent market. Investigation on the purification of methyl ester sulphonates (MES) with various carbon chains of C12, C14, C16 and C16-18 derived from palm methyl ester is of great interest. These MES powders have been repeatedly crystallized with ethanol and the purity of MES has increased to a maximum of 99% active content and 96% crystallinity index without changing the structure. These crystallized MES with high active content have 1.0% to 2.3% moisture content and retained its di-salt content in the range of 5%. The crystallized MES C16 and C16-18 attained excellent flow characteristics. Morphology, structural and its crystallinity analyses showed that the crystals MES had good solubility properties, stable crystal structure (β polymorphic) and triclinic lateral structure when it is in high active content. The brittleness of MES crystals increased from a β' to a β subcell. Crystal with high brittleness has the potential to ease production of powder, which leads to a reduction in the cost of production and improves efficiency.
    Matched MeSH terms: Esters/chemistry*
  10. Chidan Kumar CS, Loh WS, Chandraju S, Win YF, Tan WK, Quah CK, et al.
    PLoS One, 2015;10(3):e0119440.
    PMID: 25742494 DOI: 10.1371/journal.pone.0119440
    A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity.
    Matched MeSH terms: Esters/chemical synthesis*; Esters/pharmacology; Esters/chemistry
  11. Yusof ENM, Tahir MIM, Ravoof TBSA, Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):543-549.
    PMID: 28435717 DOI: 10.1107/S2056989017003991
    The title di-thio-carbazate ester (I), C18H18N2S2 [systematic name: (E)-4-methyl-benzyl 2-[(E)-3-phenyl-allyl-idene]hydrazinecarbodi-thio-ate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methyl-ene(tolyl-4) group forms a dihedral angle of 72.25 (4)° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the mol-ecule approximates mirror symmetry with the 4-tolyl group bis-ected by the plane. The configuration about both double bonds in the N-N=C-C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thio-amide synthons, {⋯HNCS}2, are formed via N-H⋯S(thione) hydrogen bonds. Connections between the dimers via C-H⋯π inter-actions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I) possesses an inter-action profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II). Computational chemistry indicates the dimeric species of (II) connected via N-H⋯S hydrogen bonds is about 0.94 kcal mol(-1) more stable than that in (I).
    Matched MeSH terms: Esters
  12. Zukerman-Schpector J, Sugiyama FH, Garcia ALL, Correia CRD, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 8):1218-1222.
    PMID: 28932440 DOI: 10.1107/S2056989017009987
    The title compound, C14H17NO4, features an epoxide-O atom fused to a pyrrolidyl ring, the latter having an envelope conformation with the N atom being the flap. The 4-meth-oxy-phenyl group is orthogonal to [dihedral angle = 85.02 (6)°] and lies to the opposite side of the five-membered ring to the epoxide O atom, while the N-bound ethyl ester group (r.m.s. deviation of the five fitted atoms = 0.0187 Å) is twisted with respect to the ring [dihedral angle = 17.23 (9)°]. The most prominent inter-actions in the crystal are of the type methine-C-H⋯O(carbon-yl) and these lead to the formation of linear supra-molecular chains along the c axis; weak benzene-C-H⋯O(epoxide) and methine-C-H⋯O(meth-oxy) inter-actions connect these into a three-dimensional architecture. The analysis of the Hirshfeld surface confirms the presence of C-H⋯O inter-actions in the crystal, but also the dominance of H⋯H dispersion contacts.
    Matched MeSH terms: Esters
  13. Yusof EN, Jotani MM, Tiekink ER, Ravoof TB
    Acta Crystallogr E Crystallogr Commun, 2016 Apr 1;72(Pt 4):516-21.
    PMID: 27375879 DOI: 10.1107/S2056989016004291
    The title di-thio-carbazate ester, C16H16N2O2S2, comprises two almost planar residues, i.e. the phenyl ring and the remaining 14 non-H atoms (r.m.s. deviation = 0.0410 Å). These are orientated perpendicularly, forming a dihedral angle of 82.72 (5)°. An intra-molecular hy-droxy-O-H⋯N(imine) hydrogen bond, leading to an S(6) loop, is noted. An analysis of the geometric parameters is consistent with the mol-ecule existing as the thione tautomer, and the conformation about the C=N bond is E. The thione S and imine H atoms lie to the same side of the mol-ecule, facilitating the formation of inter-molecular N-H⋯S hydrogen bonds leading to eight-membered {⋯HNCS}2 synthons in the crystal. These aggregates are connected by phenyl-C-H⋯O(hy-droxy) inter-actions into a supra-molecular layer in the bc plane; these stack with no directional inter-actions between them. An analysis of the Hirshfeld surface confirms the nature of the inter-molecular inter-actions.
    Matched MeSH terms: Esters
  14. Basri M, Rahman NFA, Kassim MA, Shahruzzaman RMHR, Mokles MSN
    J Oleo Sci, 2019 Apr 01;68(4):329-337.
    PMID: 30867390 DOI: 10.5650/jos.ess18197
    Lipase-catalyzed production of palm esters was performed via alcoholysis of palm oil and oleyl alcohol in solvent and solvent-free systems using a 2 L stirred tank reactor (STR). Two immobilized lipases were tested and Lipozyme RM IM exhibited superior performance in both reaction systems. Reusability studies of the enzymes in a solvent-free system also demonstrated the high stability of Lipozyme RM IM as shown by its ability to yield more than 70% palm esters with up to 19 cycles of reusing the same enzymes. Modification of the enzyme washing process improved the stability of Lipozyme TL IM in a solvent system as demonstrated by maintaining 65% yield after 5 times of repeated enzyme use. The scale up process for both lipases was conducted in the presence of solvents by using the impeller tip speed approach. Lipozyme RM IM-catalyzed reaction in a 15 L STR produced 85.7% yield and there was a significant drop to 60.7% in the 300 L STR, whereas Lipozyme TL IM had a lower yield (65%) when the reaction volume was increased to 15 L. The low yields could be due to the accumulation of enzymes at the bottom of the vessel. Purification of palm esters via solvent-solvent extraction revealed that more than 90% of oleyl alcohol was extracted after the third extraction cycle at 150 rpm impeller speed with reduced palm esters: ethanol ratio (v/v) from 1:4 to 1:3.
    Matched MeSH terms: Esters
  15. Danov KD, Stanimirova RD, Kralchevsky PA, Slavova TG, Yavrukova VI, Ung YW, et al.
    J Colloid Interface Sci, 2021 Nov;601:474-485.
    PMID: 34090025 DOI: 10.1016/j.jcis.2021.05.147
    HYPOTHESIS: Many ionic surfactants with wide applications in personal-care and house-hold detergency show limited water solubility at lower temperatures (Krafft point). This drawback can be overcome by using mixed solutions, where the ionic surfactant is incorporated in mixed micelles with another surfactant, which is soluble at lower temperatures.

    EXPERIMENTS: The solubility and electrolytic conductivity for a binary surfactant mixture of anionic methyl ester sulfonates (MES) with nonionic alkyl polyglucoside and alkyl polyoxyethylene ether at 5 °C during long-term storage were measured. Phase diagrams were established; a general theoretical model for their explanation was developed and checked experimentally.

    FINDINGS: The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general methodology, which utilizes the equations of molecular thermodynamics at minimum number of experimental measurements, is convenient for construction of such phase diagrams. The results could increase the range of applicability of MES-surfactants with relatively high Krafft temperature, but with various useful properties such as excellent biodegradability and skin compatibility; stability in hard water; good wetting and cleaning performance.

    Matched MeSH terms: Esters
  16. Ng SH, Woi PM, Basri M, Ismail Z
    J Nanobiotechnology, 2013;11:27.
    PMID: 24059593 DOI: 10.1186/1477-3155-11-27
    Palm oil esters (POEs) are esters derived from palm oil and oleyl alcohol have great potential in the cosmetic and pharmaceutical industries due to the excellent wetting behavior of the esters without the oily feel. The role of oil-in-water nanoemulsions loaded with tocotrienol sedimentation behavior was studied. LUMiFuge® 116 particle separation analyzer was used to investigate the sedimentation behavior of POEs/tocotrienol/xanthan gum nanoemulsion system during centrifugation. Analyzing the sedimentation kinetics of dispersions in a centrifugal field also yields information about the rheological behavior and structural stability.
    Matched MeSH terms: Esters/chemistry*
  17. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
    Matched MeSH terms: Esters/chemistry*
  18. Lasekan O, Abbas KA
    Crit Rev Food Sci Nutr, 2012;52(8):726-35.
    PMID: 22591343 DOI: 10.1080/10408398.2010.507910
    The characteristic flavor of exotic tropical fruits is one of their most attractive attributes to consumers. In this article, the enormous diversity of exotic fruit flavors is reviewed. Classifying some of the exotic fruits into two classes on the basis of whether esters or terpenes predominate in the aroma was also attempted. Indeed, as far as exotic tropical fruits are concerned, the majority of fruits have terpenes predominating in their aroma profile. Some of the fruits in this group are the Amazonian fruits such as pitanga, umbu-caja, camu-camu, garcinia, and bacuri. The ester group is made up of rambutan, durians, star fruit, snake fruit, acerola, tamarind, sapodilla, genipap, soursop, cashew, melon, jackfruit, and cupuacu respectively. Also, the role of sulphur-volatiles in some of the exotic fruits is detailed.
    Matched MeSH terms: Esters/analysis
  19. Tay BY
    Int J Cosmet Sci, 2013 Feb;35(1):57-63.
    PMID: 22994145 DOI: 10.1111/ics.12004
    A simple and rapid gas chromatography (GC) method with flame ionization detector was developed for detection of isopropyl para-toluenesulphonate (IPTS) in palm-based isopropyl palmitate (IPP) and isopropyl myristate (IPM). The method involved spiking the IPP/IPM samples with IPTS and directly injecting the spiked samples into GC without undergoing clean-up steps. The calibration curves for IPTS showed good linearity with coefficient correlation of 0.9999 for six-point calibration from 0.5 to 50 μg mL(-1) and 0.9996 for six-point calibration from 0.5 to 200 μg mL(-1) . IPTS recoveries from IPP were 98.6-103.5% with relative standard deviation (RSD) of 0.40-2.80%, whereas recoveries from IPM were 97.0-107.2% with RSD of 0.42-4.21%. The identity of IPTS recovered from the isopropyl esters was confirmed by a GC-mass spectrometer detector. The method was successfully applied to the analyses of IPTS in commercial samples. It was found that there were IPTS in the range of 34.8-1303.0 μg g(-1) in the palm-based esters for some of the samples analysed.
    Matched MeSH terms: Esters/chemistry*
  20. Rahman NA, Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9749-54.
    PMID: 21855332 DOI: 10.1016/j.biortech.2011.07.023
    The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites.
    Matched MeSH terms: Esters/chemical synthesis*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links