Displaying publications 1 - 20 of 239 in total

  1. Zianor Azrina ZA, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam AKMM
    Carbohydr Polym, 2017 Apr 15;162:115-120.
    PMID: 28224888 DOI: 10.1016/j.carbpol.2017.01.035
    Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP.
    Matched MeSH terms: Fruit/chemistry*
  2. Ma ZF, Zhang H, Teh SS, Wang CW, Zhang Y, Hayford F, et al.
    Oxid Med Cell Longev, 2019;2019:2437397.
    PMID: 30728882 DOI: 10.1155/2019/2437397
    Goji berries (Lycium fruits) are usually found in Asia, particularly in northwest regions of China. Traditionally, dried goji berries are cooked before they are consumed. They are commonly used in Chinese soups and as herbal tea. Moreover, goji berries are used for the production of tincture, wine, and juice. Goji berries are high antioxidant potential fruits which alleviate oxidative stress to confer many health protective benefits such as preventing free radicals from damaging DNA, lipids, and proteins. Therefore, the aim of the review was to focus on the bioactive compounds and pharmacological properties of goji berries including their molecular mechanisms of action. The health benefits of goji berries include enhancing hemopoiesis, antiradiation, antiaging, anticancer, improvement of immunity, and antioxidation. There is a better protection through synergistic and additive effects in fruits and herbal products from a complex mixture of phytochemicals when compared to one single phytochemical.
    Matched MeSH terms: Fruit/chemistry*
  3. Jahurul MH, Zaidul IS, Ghafoor K, Al-Juhaimi FY, Nyam KL, Norulaini NA, et al.
    Food Chem, 2015 Sep 15;183:173-80.
    PMID: 25863626 DOI: 10.1016/j.foodchem.2015.03.046
    The large amount of waste produced by the food industries causes serious environmental problems and also results in economic losses if not utilized effectively. Different research reports have revealed that food industry by-products can be good sources of potentially valuable bioactive compounds. As such, the mango juice industry uses only the edible portions of the mangoes, and a considerable amount of peels and seeds are discarded as industrial waste. These mango by-products come from the tropical or subtropical fruit processing industries. Mango by-products, especially seeds and peels, are considered to be cheap sources of valuable food and nutraceutical ingredients. The main uses of natural food ingredients derived from mango by-products are presented and discussed, and the mainstream sectors of application for these by-products, such as in the food, pharmaceutical, nutraceutical and cosmetic industries, are highlighted.
    Matched MeSH terms: Fruit/chemistry*
  4. Amid M, Abd Manap MY
    Food Chem, 2014 Dec 15;165:412-8.
    PMID: 25038694 DOI: 10.1016/j.foodchem.2014.03.133
    An amylase enzyme from pitaya peel was purified 234.2-folds with 72.1% recovery using ammonium sulphate precipitation, gel filtration and ion exchange chromatography. Gel filtration chromatography and SDS-PAGE revealed that the enzyme is monomeric with a molecular weight of 42.1kDa. The apparent Km and Vmax of the amylase were 2.7 mg/ml and 34.30 u/min/mg of protein, respectively. The enzyme was highly active and stable over a wide pH range from pH 3 to pH 11.0, with optimum activity being observed at pH 5.0. The enzyme was highly selective for soluble starch, amylopectin, glycogen and pulullan. The purified amylase did not require calcium and displayed extreme stability with regard to surfactants and oxidising agents. EDTA, a powerful chelating agent, did not have any significant effect on the stability of the enzyme. Such characteristics have not been previously reported for this type of enzyme from fruit peel. This enzyme, which possesses unique properties, could be widely used in different types of industries, especially in food and biotechnological applications.
    Matched MeSH terms: Fruit/chemistry*
  5. Tee LH, Yang B, Nagendra KP, Ramanan RN, Sun J, Chan ES, et al.
    Food Chem, 2014 Dec 15;165:247-55.
    PMID: 25038673 DOI: 10.1016/j.foodchem.2014.05.084
    Dacryodes species are evergreen, perennial trees with fleshy fruits and belong to the family Buseraseae. Many Dacryodes species are underutilized but are widely applied in traditional folk medicine to treat malaria, fever and skin diseases. The nutritional compositions, phytochemicals and biological activities of Dacryodes edulis, Dacryodes rostrata, Dacryodes buettneri, Dacryodes klaineana and Dacryodes hexandra are presented. The edible fruits of D. edulis are rich in lipids, proteins, vitamins, fatty acids and amino acids. Its extracts (leaf, fruit and resin) exhibit antioxidant, anti-microbial, anti-carcinogenic and other bioactivities. D. rostrata fruit has significant nutrient content, and is rich in proteins, lipids and minerals. These fruits are also highly rich in polyphenols, anthocyanins and antioxidant activities. This comprehensive review will assist the reader in understanding the nutritional benefits of Dacryodes species and in identifying current research needs.
    Matched MeSH terms: Fruit/chemistry
  6. Krishnaiah D, Nithyanandam R, Sarbatly R
    Crit Rev Food Sci Nutr, 2014;54(4):449-73.
    PMID: 24236997 DOI: 10.1080/10408398.2011.587038
    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.
    Matched MeSH terms: Fruit/chemistry*
  7. Karim AA, Azlan A
    Molecules, 2012 Oct 10;17(10):11931-46.
    PMID: 23052712 DOI: 10.3390/molecules171011931
    Fruit pods contain various beneficial compounds that have biological activities and can be used as a source of pharmaceutical and nutraceutical products. Although pods or pericarps are usually discarded when consuming the edible parts of fruits, they contain some compounds that exhibit biological activities after extraction. Most fruit pods included in this review contain polyphenolic components that can promote antioxidant effects on human health. Additionally, anti-inflammatory, antibacterial, antifungal and chemopreventive effects are associated with these fruit pod extracts. Besides polyphenolics, other compounds such as xanthones, carotenoids and saponins also exhibit health effects and can be potential sources of nutraceutical and pharmaceutical components. In this review, information on fruit pods or pericarp of Garcinia mangostana, Ceratonia siliqua, Moringa oleifera, Acacia nilotica, Sapindus rarak and Prosopis cineraria is presented and discussed with regard to their biological activity of the major compounds existing in them. The fruit pods of other ethno- botanical plants have also been reviewed. It can be concluded that although fruit pods are considered as being of no practical use and are often being thrown away, they nevertheless contain compounds that might be useful sources of nutraceutical and other pharmaceutical components.
    Matched MeSH terms: Fruit/chemistry*
  8. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WM, Rahman MZ
    Int J Mol Sci, 2012;13(2):1327-46.
    PMID: 22408394 DOI: 10.3390/ijms13021327
    A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites' thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens.
    Matched MeSH terms: Fruit/chemistry*
  9. Yee LK, Abbas Z, Jusoh MA, Yeow YK, Meng CE
    Sensors (Basel), 2011;11(4):4073-85.
    PMID: 22163837 DOI: 10.3390/s110404073
    This paper presents the development of a PC-based microwave five-port reflectometer for the determination of moisture content in oil palm fruits. The reflectometer was designed to measure both the magnitude and phase of the reflection coefficient of any passive microwave device. The stand-alone reflectometer consists of a PC, a microwave source, diode detectors and an analog to digital converter. All the measurement and data acquisition were done using Agilent VEE graphical programming software. The relectometer can be used with any reflection based microwave sensor. In this work, the application of the reflectometer as a useful instrument to determine the moisture content in oil palm fruits using monopole and coaxial sensors was demonstrated. Calibration equations between reflection coefficients and moisture content have been established for both sensors. The equation based on phase measurement of monopole sensor was found to be accurate within 5% in predicting moisture content in the fruits when compared to the conventional oven drying method.
    Matched MeSH terms: Fruit/chemistry*
  10. Hew KL, Tamidi AM, Yusup S, Lee KT, Ahmad MM
    Bioresour Technol, 2010 Nov;101(22):8855-8.
    PMID: 20621470 DOI: 10.1016/j.biortech.2010.05.036
    The main objective of this paper is to find the optimum operating condition to upgrade the EFB-derived pyrolysis oil (bio-oil) to liquid fuel, mainly gasoline using Taguchi Method. From the analysis that has been done, it is found that the optimum operating condition for heterogeneous catalytic cracking process is at 400 degrees C, 15min of reaction time using 30g of catalyst weight where operating at this condition produced the highest yield of gasoline fraction which is 91.67 wt.%. This observation proves that EFB-derived pyrolysis oil could be upgraded via heterogeneous catalytic cracking to produce gasoline.
    Matched MeSH terms: Fruit/chemistry*
  11. Xiang LY, P Mohammed MA, Samsu Baharuddin A
    Carbohydr Polym, 2016 09 05;148:11-20.
    PMID: 27185110 DOI: 10.1016/j.carbpol.2016.04.055
    Microcrystalline cellulose (MCC) extracted from empty fruit bunches (EFB), stalk and spikelet were characterised through physicochemical and microstructure analyses. Raw stalk fibres yielded the highest cellulose content (42.43%), followed by EFB (32.33%) and spikelet (18.83%). Likewise, lowest lignin and residual oil content was reported in raw stalk fibres compared to EFB and spikelet. SEM revealed significant changes on fibres' surface morphology throughout the extraction process. FTIR analysis showed that main characteristic peaks of hemicellulose and lignin was absent on the extracted MCC. The crystallinity index for MCC extracted from EFB (82.5%), stalk (82.2%) and spikelet (86.5%) was comparable to commercial MCC (81.9%). Results suggested stalk fibres is more preferable for the production of MCC compared to EFB and spikelet. Further rheological studies showed viscoelastic behaviour with no significant differences between commercial and stalk-based MCC, while modelling work showed ability to simulate complex deformation of the MCC-hydrogel/food mixture during processing/handling stage.
    Matched MeSH terms: Fruit/chemistry
  12. Tang PL, Hassan O, Maskat MY, Badri K
    Biomed Res Int, 2015;2015:891539.
    PMID: 26798644 DOI: 10.1155/2015/891539
    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.
    Matched MeSH terms: Fruit/chemistry*
  13. Omar AF, MatJafri MZ
    Sensors (Basel), 2013;13(4):4876-83.
    PMID: 23584118 DOI: 10.3390/s130404876
    This study presents a novel application of near infrared (NIR) spectral linearisation for measuring the soluble solids content (SSC) of carambola fruits. NIR spectra were measured using reflectance and interactance methods. In this study, only the interactance measurement technique successfully generated a reliable measurement result with a coefficient of determination of (R2) = 0.724 and a root mean square error of prediction for (RMSEP) = 0.461° Brix. The results from this technique produced a highly accurate and stable prediction model compared with multiple linear regression techniques.
    Matched MeSH terms: Fruit/chemistry*
  14. Liew SQ, Ngoh GC, Yusoff R, Teoh WH
    Int J Biol Macromol, 2016 Dec;93(Pt A):426-435.
    PMID: 27565298 DOI: 10.1016/j.ijbiomac.2016.08.065
    This study aims to optimize sequential ultrasound-microwave assisted extraction (UMAE) on pomelo peel using citric acid. The effects of pH, sonication time, microwave power and irradiation time on the yield and the degree of esterification (DE) of pectin were investigated. Under optimized conditions of pH 1.80, 27.52min sonication followed by 6.40min microwave irradiation at 643.44W, the yield and the DE value of pectin obtained was respectively at 38.00% and 56.88%. Based upon optimized UMAE condition, the pectin from microwave-ultrasound assisted extraction (MUAE), ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) were studied. The yield of pectin adopting the UMAE was higher than all other techniques in the order of UMAE>MUAE>MAE>UAE. The pectin's galacturonic acid content obtained from combined extraction technique is higher than that obtained from sole extraction technique and the pectin gel produced from various techniques exhibited a pseudoplastic behaviour. The morphological structures of pectin extracted from MUAE and MAE closely resemble each other. The extracted pectin from UMAE with smaller and more regular surface differs greatly from that of UAE. This has substantiated the highest pectin yield of 36.33% from UMAE and further signified their compatibility and potentiality in pectin extraction.
    Matched MeSH terms: Fruit/chemistry*
  15. Teh SS, Lau HLN, Mah SH
    J Oleo Sci, 2019 Aug 01;68(8):803-808.
    PMID: 31292345 DOI: 10.5650/jos.ess19098
    Refined palm-pressed mesocarp fibre oil (PPFO), which can be obtained from one of the by-products of palm oil milling, palm-pressed mesocarp fibre, is categorized as palm sludge oil. So far, it has been given less attention and underutilized until some recent scientific reports revealing its high content of phytonutrients, carotenoids and vitamin E, which have been proven scientifically to possess anti-oxidant activity. The study evaluated the stability of PPFO as a carrier for plant-based emulsion. PPFO was extracted and examined for its positional distribution of fatty acids, saturation levels and iodine value (IV) using NMR spectroscopy. The PPFO-based emulsion was then prepared and subjected to stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point for 28 days. Phase separation was observed from PPFO-based emulsion stored at 40℃ from day-21 onwards while no creaming found in all the palm olein-based emulsions stored at the three storage temperatures. Nevertheless, results indicated that the PPFO-based emulsion passed all the tests above showing insignificant phase separation (p > 0.05) compared with those of palm olein commonly used in emulsion preparation. The findings suggested that PPFO enriched with valuable phytonutrients could be used as an alternative carrier oil in emulsion formulation, which is an important component in personal care products.
    Matched MeSH terms: Fruit/chemistry
  16. Mohamed Mahzir KA, Abd Gani SS, Hasanah Zaidan U, Halmi MIE
    Molecules, 2018 Mar 22;23(4).
    PMID: 29565312 DOI: 10.3390/molecules23040724
    In this study, the optimal conditions for the extraction of antioxidants from the Buah Mahkota Dewa fruit (Phaleria macrocarpa) was determined by using Response Surface Methodology (RSM). The optimisation was applied using a Central Composite Design (CCD) to investigate the effect of three independent variables, namely extraction temperature (°C), extraction time (minutes) and extraction solvent to-feed ratio (% v/v) on four responses: free radical scavenging activity (DPPH), ferric ion reducing power assay (FRAP), total phenolic content (TPC) and total flavonoid content (TFC). The optimal conditions for the antioxidants extraction were found to be 64 °C extraction temperature, 66 min extraction time and 75% v/v solvent to-feed ratio giving the highest percentage yields of DPPH, FRAP, TPC and TFC of 86.85%, 7.47%, 292.86 mg/g and 3.22 mg/g, respectively. Moreover, the data were subjected to Response Surface Methodology (RSM) and the results showed that the polynomial equations for all models were significant, did not show lack of fit, and presented adjusted determination coefficients (R²) above 99%, proving that the yield of phenolic, flavonoid and antioxidants activities obtained experimentally were close to the predicted values and the suitability of the model employed in RSM to optimise the extraction conditions. Hence, in this study, the fruit from P. macrocarpa could be considered to have strong antioxidant ability and can be used in various cosmeceutical or medicinal applications.
    Matched MeSH terms: Fruit/chemistry*
  17. Liew SQ, Teoh WH, Tan CK, Yusoff R, Ngoh GC
    Int J Biol Macromol, 2018 Sep;116:128-135.
    PMID: 29738869 DOI: 10.1016/j.ijbiomac.2018.05.013
    Low methoxyl (LM) pectin was extracted from pomelo peels using subcritical water in a dynamic mode. The effects of pressure and temperature were analyzed through a face-centred central composite design. Extraction yield and the rate of extraction were found to be predominantly influenced by temperature. Optimization of the subcritical water extraction (SWE) yielded an optimized operating condition of 120°C and 30bar with a predicted pectin yield of 18.8%. The corresponding experimental yield was 19.6%, which is in close agreement with the predicted data. The pectin obtained from the optimized condition was further analyzed for its physicochemical properties. The kinetics of the SWE was also evaluated whereby the one-site kinetic desorption model was found to be in good agreement with experimental data (R2>0.94).
    Matched MeSH terms: Fruit/chemistry
  18. Okuro PK, Tavernier I, Bin Sintang MD, Skirtach AG, Vicente AA, Dewettinck K, et al.
    Food Funct, 2018 Mar 01;9(3):1755-1767.
    PMID: 29508864 DOI: 10.1039/c7fo01775h
    In this study, the effect of lecithin (LEC) on the crystallization and gelation of fruit wax (FW) with sunflower oil was researched. A synergistic effect on the gel strength was observed at FW : LEC ratios of 75 : 25 and 50 : 50, compared to the corresponding single component formulations (100 : 0 and 0 : 100). Even below the critical gelling concentration (Cg) of FW, the addition of lecithin enabled gel formation. Lecithin affected the thermal behavior of the structure by delaying both crystallization and gel formation. The phospholipid acted as a crystal habit modifier changing the microstructure of the oleogel, as was observed by polarized light microscopy. Cryo-scanning electron microscopy revealed a similar platelet-like arrangement for both FW as a single oleogelator and FW in combination with LEC. However, a denser structure could be observed in the FW : LEC oleogelator mixture. Both the oil-binding capacity and the thixotropic recovery were enhanced upon lecithin addition. These improvements were attributed to the hydrogen bonding between FW and LEC, as suggested by Raman spectroscopy. We hypothesized that lecithin alters the molecular assembly properties of the FW due to the interactions between the polar moieties of the oleogelators, which consequently impacts the hydrophobic tail (re)arrangement in gelator-gelator and solvent-gelator interactions. The lipid crystal engineering approach followed here offered prospects of obtaining harder self-standing structures at a lower oleogelator concentration. These synergistic interactions provide an opportunity to reduce the wax concentration and, as such, the waxy mouthfeel without compromising the oleogel properties.
    Matched MeSH terms: Fruit/chemistry
  19. Gannasin SP, Adzahan NM, Hamzah MY, Mustafa S, Muhammad K
    Food Chem, 2015 Sep 1;182:292-301.
    PMID: 25842340 DOI: 10.1016/j.foodchem.2015.03.010
    Tamarillo (Solanum betaceum Cav.) is an underutilised fruit in Malaysia. The fruit, however, contains good proportions of soluble fibre, protein, starch, anthocyanins and carotenoids. Amongst the fruits, only tamarillo mesocarp contains both polar (anthocyanins) and non-polar (carotenoids) pigments. The ability to retain both polar and non-polar pigments in the mesocarp could be related to the unique properties of its hydrocolloids. To understand the pigment-hydrocolloid interaction in the fruit, information on the physicochemical characteristics of the hydrocolloids is required. Therefore, hydrocolloids from the anthocyanin-rich seed mucilage fraction of the tamarillo and its carotenoid-rich pulp fraction were extracted and characterised. Water and 1% citric acid were used to extract the seed mucilage hydrocolloid while 72% ethanol and 20mM HEPES buffer were used for pulp hydrocolloid extraction. Seed mucilage hydrocolloid was primarily composed of arabinogalactan protein-associated pectin whereas pulp hydrocolloid was composed of hemicellulosic polysaccharides with some naturally interacting proteins and neutral polysaccharides.
    Matched MeSH terms: Fruit/chemistry*
  20. Ho LH, Bhat R
    Food Chem, 2015 Feb 1;168:80-9.
    PMID: 25172686 DOI: 10.1016/j.foodchem.2014.07.020
    This review focuses on providing informations on potential uses of durian, an exotic tropical fruit as a source of food, as well as a potential therapeutic agent. Apart from disseminating details on the traditional value, in this review we have focussed on the nutritional composition, presence of bioactive compounds, volatiles, antimicrobials, as well as on the toxicological effects of durian fruit consumption. Durian fruits are enjoyed for their unique taste and organoleptic qualities, but there is also a need to ensure that their potential is exploited for the international market. In addition, in the present socio-economic scenario, tapping the potential of exotic tropical fruit such as durian could benefit the health of consumers as well as support the local population who depend on farming for a livelihood. Overall, it is envisaged that identifying the nutraceutical potential of the edible and non-edible parts of durian fruits can benefit food and pharmaceutical industries.
    Matched MeSH terms: Fruit/chemistry*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links