Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Al-Afifi NA, Alabsi AM, Shaghayegh G, Ramanathan A, Ali R, Alkoshab M, et al.
    Arch Oral Biol, 2019 Aug;104:77-89.
    PMID: 31176147 DOI: 10.1016/j.archoralbio.2019.05.030
    OBJECTIVE: To study the potential for apoptosis induction of Dracaena cinnabari Balf. f methanolic extract (DCBME) on tongue squamous cell carcinoma cell line, H103. We evaluated the chemopreventive activity of DCBME against 4-nitroquinolone-1-oxide (4NQO)-induced tongue carcinogenesis in rat.

    DESIGN: Phase contrast microscope, acridine orange/propidium iodide (AO/PI) analysis of cells under fluorescence microscope, annexin-V flow-cytometry, DNA fragmentation, mitochondrial membrane potential, and caspase 3/7, 8 and 9 assays were performed. In vivo study, the rats were given 4NQO in their drinking water. The tongue was subjected to histopathological study to evaluate the incidence of squamous cell carcinoma (SCC).

    RESULTS: DCBME showed cytotoxic effect on H103 cells in a dose- and time-dependent manner. Furthermore, DCBME showed low cytotoxic effect on a normal cell line. In H103 cells, it caused cell morphology changes, S and G2/M-phase cell cycle arrest, significant reduction of cell migration and induced apoptosis through the intrinsic (mitochondrial) pathway. The incidence of SCC was 85.7% in the induced cancer and vehicle groups while in rats treated with DCBME at 100, 500 and 1000 mg/kg was 57.1%, 28.6% and 14.3%, respectively.

    CONCLUSIONS: (DCBME)-apoptosis induction reported in this work can be exploited as a potential antitumor agent with applications in medicinal treatments of tongue SCC.

    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  2. Poznanski RR, Cacha LA, Ali J, Rizvi ZH, Yupapin P, Salleh SH, et al.
    PLoS One, 2017;12(9):e0183677.
    PMID: 28880876 DOI: 10.1371/journal.pone.0183677
    A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage') have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization-induced capacitive current in microstructure and nonohmic mitochondrial membrane current.
    Matched MeSH terms: Membrane Potential, Mitochondrial*
  3. Roslie H, Chan KM, Rajab NF, Velu SS, Kadir SA, Bunyamin I, et al.
    J Toxicol Sci, 2012 Feb;37(1):13-21.
    PMID: 22293408
    A series of 22 stilbene derivatives based on resveratrol were synthesized incorporating acetoxy-, benzyloxy-, carboxy-, chloro-, hydroxy- and methoxy functional groups. We examined the cytotoxicity of these 22 stilbenes in human K562 chronic myelogenous leukemia cells. Only four compounds were cytotoxic namely 4'-hydroxy-3-methoxystilbene (15), 3'-acetoxy-4-chlorostilbene (19), 4'-hydroxy-3,5-dimethoxystilbene or pterostilbene (3) and 3,5-dibenzyloxy-4'-hydroxystilbene (28) with IC(50)s of 78 µM, 38 µM, 67 µM and 19.5 µM respectively. Further apoptosis assessment on the most potent compound, 28, confirmed that the cells underwent apoptosis based on phosphatidylserine externalization and loss of mitochondrial membrane potential. Importantly, we observed a concentration-dependent activation of caspase-9 as early as 2 hr with resultant caspase-3 cleavage in 28-induced apoptosis. Additionally, a structure-activity relationship (SAR) study proposed a possible mechanism of action for compound 28. Taken together, our data suggests that the pro-apoptotic effects of 28 involve the intrinsic mitochondrial pathway characterized by an early activation of caspase-9.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  4. Vijayarathna S, Oon CE, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 May;89:499-514.
    PMID: 28249252 DOI: 10.1016/j.biopha.2017.02.075
    Medicinal plants have been accepted as a gold mine, with respect to the diversity of their phytochemicals. Many medicinal plants extracts are potential anticancer agents. Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is one of the most significant native medicinal plants and is found throughout Malaysia. Hence, the present study was intended to assess the anticancer properties of P. longifolia leaf methanolic extract (PLME) and its underlying mechanisms. The Annexin V/PI flow cytometry analysis showed that PLME induces apoptosis in HeLa cells in dose-dependent manner whereas the PI flow cytometric analysis for cell cycle demonstrated the accumulation of cells at sub G0/G1, G0/G1 and G2/M phases. Investigation with JC-1 flow cytometry analysis indicated increase in mitochondria membrane potential depolarisation corresponding to increase in PLME concentrations. PLME was also shown to influence intracellular reactive oxygen species (ROS) by exerting anti-oxidant (half IC50) and pro-oxidant (IC50and double IC50) affect against HeLa cells. PLME treatment also displayed DNA damage in HeLa cells in concentration depended fashion. The proteomic profiling array exposed the expression of pro-apoptotic and anti-apoptotic proteins upon PLME treatment at IC50concentration in HeLa cells. Pro-apoptotic proteins; BAX, BAD, cytochrome c, caspase-3, p21, p27 and p53 were found to be significantly up-regulated while anti-apoptotic proteins; BCL-2 and BCL-w were found to be significantly down-regulated. This investigation postulated the role of p53 into mediating apoptosis, cell cycle arrest and mitochondrial potential depolarisation by modulating the redox status of HeLa cells.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects*
  5. Dhurga DB, Suresh K, Tan TC
    PLoS One, 2016;11(7):e0155390.
    PMID: 27471855 DOI: 10.1371/journal.pone.0155390
    The role and function of the granular life cycle stage in Blastocystis sp, remains uncertain despite suggestions being made that the granules are metabolic, reproductive and lipid in nature. This present study aims to understand granular formation by triggering apoptosis in Blastocystis sp. by treating them with metronidazole (MTZ). Blastocystis sp.cultures of 4 sub-types namely 1, 2, 3 and 5 when treated with 0.01 and 0.0001 mg/ml of metronidazole (MTZ) respectively showed many of the parasites to be both viable and apoptotic (VA). Treated subtype 3 isolates exhibited the highest number of granular forms i.e. 88% (p<0.001) (0.0001 mg/ml) and 69% (p<0.01) (0.01 mg/ml) respectively at the 72 h in in vitro culture compared to other subtypes. These VA forms showed distinct granules using acridine orange (AO) and 4',6-diamino-2-phenylindole (DAPI) staining with a mean per cell ranging from 5 in ST 5 to as high as 16 in ST 3. These forms showed intact mitochondria in both viable apoptotic (VA) and viable non-apoptotic (VNA) cells with a pattern of accumulation of lipid droplets corresponding to viable cells. Granular VA forms looked ultra-structurally different with prominent presence of mitochondria-like organelle (MLO) and a changed mitochondrial trans-membrane potential with thicker membrane and a highly convoluted inner membrane than the less dense non-viable apoptotic (NVA) cells. This suggests that granular formation during apoptosis is a self-regulatory mechanism to produce higher number of viable cells in response to treatment. This study directs the need to search novel chemotherapeutic approaches by incorporating these findings when developing drugs against the emerging Blastocystis sp. infections.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  6. Samie N, Muniandy S, Kanthimathi MS, Haerian BS, Azudin RE
    Sci Rep, 2016 Apr 13;6:24172.
    PMID: 27072064 DOI: 10.1038/srep24172
    The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  7. Li LK, Rola AS, Kaid FA, Ali AM, Alabsi AM
    Arch Oral Biol, 2016 Apr;64:28-38.
    PMID: 26752226 DOI: 10.1016/j.archoralbio.2015.12.002
    Goniothalamin is a natural occurring styryl-lactone compound isolated from Goniothalamus macrophyllus. It had been demonstrated to process promising anticancer activity on various cancer cell lines. However, little study has been carried out on oral cancer. The aim of this study was to determine the cytotoxic effects of goniothalamin against H400 oral cancer cells and its underlying molecular pathways. Results from MTT assay demonstrated that goniothalamin exhibited selective cytotoxicity as well as inhibited cells growth of H400 in dose and time-dependent manner. This was achieved primarily via apoptosis where apoptotic bodies and membrane blebbing were observed using AO/PI and DAPI/Annexin V-FITC fluorescence double staining. In order to understand the apoptosis mechanisms induced by goniothalamin, apoptosis assessment based on mitochondrial membrane potential assay and cytochrome c enzyme-linked immunosorbent assay were carried out. Results demonstrated that the depolarization of mitochondrial transmembrane potential facilitated the release of mitochondrial cytochrome c into cytosol. Caspases assays revealed the activation of initiator caspase-9 and executioner caspase-3/7 in dose-dependent manners. This form of apoptosis was closely associated with the regulation on Bcl-2 family proteins, cell cycle arrest at S phase and inhibition of NF-κβ translocation from cytoplasm to nucleus. Conclusion, goniothalamin has the potential to act as an anticancer agent against human oral squamous cell carcinoma (H400 cells).
    Matched MeSH terms: Membrane Potential, Mitochondrial
  8. Teoh PL, Liau M, Cheong BE
    Nutr Cancer, 2019;71(4):668-675.
    PMID: 30663402 DOI: 10.1080/01635581.2018.1559942
    Phyla nodiflora L. has been used as medicinal remedies for various ailments due to its antioxidant, anti-inflammatory, anti-bacterial, anti-tumor activity. Previously, we found that the plant extracts induced DNA fragmentation in MCF-7. This study was to investigate the modes of action of P. nodiflora in inhibiting breast cancer cells using leaf ethyl acetate (EA leaf), stem ethyl acetate (EA stem) and stem methanol (Met stem) extracts. The MTT assay showed that the anti-proliferative effects of P. nodiflora extracts were selective towards MCF-7 with a minimal effect on MCF10A. Morphological changes such as cell shrinkage and nuclear condensation were observed in treated cells. We found that induction of apoptosis by EA leaf and EA stem was mitochondrial-dependent while loss of mitochondrial membrane potential was not found in Met stem-treated cells. In addition, the expression levels of AIFM1, CASP9, CFLAR, and IGF1R were altered after treatment. Decreased BCL-2 expression was found in treated cells while BAX and caspases' expression was upregulated or maintained. All extracts caused perturbation of cell cycle at S phase by dysregulating the expression of cell cycle regulators such as CDKs and cyclins. Our findings indicate that P. nodiflora inhibits MCF-7 cells by inducing apoptosis and perturbing cell cycle.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  9. Thangavelu L, Geetha RV, Devaraj E, Dua K, Chellappan DK, Balusamy SR
    Environ Toxicol, 2022 Mar;37(3):446-456.
    PMID: 34800081 DOI: 10.1002/tox.23411
    Acacia catechu Willd (Fabaceae) is a thorny tree widely distributed in India and commonly used as traditional Ayurvedic medicine for various ailments. The current study evaluates the cytotoxic potentials of A. catechu ethanolic seed extract (ACSE) in HepG2 cells, a human hepatocellular carcinoma cell line. The HepG2 cells were treated with 0.1, 0.3, 1, 3, 10, 30, 100, 300 and 1000 μg/ml of ACSE and the cytotoxic effect was evaluated by MTT and lactate dehydrogenase (LDH) leakage assays. The IC50 of ACSE was found at 77.04 μg/ml and therefore, further studies were carried out with the concentrations of 35 and 70 μg/ml. The intracellular reactive oxygen species (ROS) generation and apoptosis-related morphological changes were evaluated. Gene expressions of Bax, Bcl-2, cytochrome C (Cyt-c), caspases-9 and 3 were analyzed by qPCR. The ACSE treatments caused LDH leakage was associated with an increased ROS generation. The increased ROS generation was associated with the downregulation of intracellular antioxidant enzyme superoxide dismutase and reduced glutathione content. AO/EB and PI staining also confirmed chromatin condensation and apoptosis. The flow cytometric analysis showed an accumulation of HepG2 cells at sub G0/G1 (apoptotic) phase upon ACSE treatments. The ACSE induced cytotoxicity and oxidative stress were related to increased apoptotic marker gene expressions such as Bax, Cyt-c, caspase-9 and 3, and decreased anti-apoptotic marker Bcl-2. The current finding suggests that ACSE has apoptosis-inducing potential via the mitochondrial pathway in HepG2 cells.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  10. Muhammad Nadzri N, Abdul AB, Sukari MA, Abdelwahab SI, Eid EE, Mohan S, et al.
    PMID: 23737847 DOI: 10.1155/2013/810632
    Zerumbone (ZER) isolated from Zingiber zerumbet was previously encapsulated with hydroxypropyl- β -cyclodextrin (HP β CD) to enhance ZER's solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HP β CD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G2/M arrest. Further investigations showed the release of cytochrome c and loss of mitochondrial membrane potential, proving mitochondrial dysfunction upon the ZER-HP β CD treatment as well as modulating proapoptotic and anti-apototic Bcl-2 family members. A significant increase in caspase 3/7, caspase 9, and caspase 8 was detected with the depletion of BID cleaved by caspase 8. Collectively, these results prove that a highly soluble inclusion complex of ZER-HP β CD could be a promising anticancer agent for the treatment of hepatocellular carcinoma in humans.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  11. Chan G, Kamarudin MN, Wong DZ, Ismail NH, Abdul Latif F, Hasan A, et al.
    PMID: 22956972 DOI: 10.1155/2012/156521
    This study was aimed to isolate and evaluate neuroprotective compounds from the hexane extract of the bark of Mesua kunstleri (Clusiaceae) on H(2)O(2)-induced apoptosis in NG108-15 cells. Five 4-phenylcoumarins were isolated by using various chromatographic techniques via neuroprotective activity-guided fractionation and isolation from the active hexane extract. The chemical structures of the isolated compounds were confirmed by NMR spectroscopic data interpretation and comparison with literature values. Cell viability data demonstrated that mesuagenin C 3 significantly increased cell viability. Hoechst 33342/PI staining illustrated mesuagenin C 3 was able to abate the nuclear shrinkage, chromatin condensation and formation of apoptotic bodies. Pretreatment with mesuagenin C 3 reduced total annexin V positive cells and increased the level of intracellular glutathione (GSH). Mesuagenin C 3 attenuated membrane potential (Δψm), reduced Bax/Bcl-2 ratio and inactivated of caspase-3/7 and -9. These results indicated that mesuagenin C 3 could protect NG108-15 cells against H(2)O(2)-induced apoptosis by increasing intracellular GSH level, aggrandizing Δψm, and modulating apoptotic signalling pathway through Bcl-2 family and caspase-3/7 and -9. These findings confirmed the involvement of intrinsic apoptotic pathway in H(2)O(2)-induced apoptosis and suggested that mesuagenin C 3 may have potential therapeutic properties for neurodegenerative diseases.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  12. Ho YF, Karsani SA, Yong WK, Abd Malek SN
    PMID: 23533528 DOI: 10.1155/2013/857257
    Researchers are looking into the potential development of natural compounds for anticancer therapy. Previous studies have postulated the cytotoxic effect of helichrysetin towards different cancer cell lines. In this study, we investigated the cytotoxic effect of helichrysetin, a naturally occurring chalcone on four selected cancer cell lines, A549, MCF-7, Ca Ski, and HT-29, and further elucidated its biochemical and molecular mechanisms in human lung adenocarcinoma, A549. Helichrysetin showed the highest cytotoxic activity against Ca Ski followed by A549. Changes in the nuclear morphology of A549 cells such as chromatin condensation and nuclear fragmentation were observed in cells treated with helichrysetin. Further evidence of apoptosis includes the externalization of phosphatidylserine and the collapse of mitochondrial membrane potential which are both early signs of apoptosis. These signs of apoptosis are related to cell cycle blockade at the S checkpoint which suggests that the alteration of the cell cycle contributes to the induction of apoptosis in A549. These results suggest that helichrysetin has great potentials for development as an anticancer agent.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  13. Subramani T, Yeap SK, Ho WY, Ho CL, Osman CP, Ismail NH, et al.
    Oncol Lett, 2015 Jan;9(1):335-340.
    PMID: 25435988
    Tamoxifen (TAM) is the mainline drug treatment for breast cancer, despite its side effects and the development of resistance. As an alternative approach, in the present study a novel combination therapy was established through combining TAM with nordamnacanthal (NDAM) in order to investigate the additive effect of these drugs in MCF-7 human breast cancer cells. A significant dose-dependent reduction in cell viability and an increase in apoptosis were observed in the MCF-7 cells cotreated with TAM and NDAM compared with the untreated control cells or the cells treated with TAM and NDAM alone (P<0.05). The cytotoxic influence of the combination of TAM and NDAM was found to be two-fold that of the individual agents. Annexin V/propidium iodide double-staining revealed the typical nuclear features of apoptosis. Furthermore, an increase in the proportion of apoptotic, Annexin V-positive cells was observed with the combination therapy. Moreover, this apoptotic induction was associated with a collapse of the mitochondrial membrane potential and the generation of reactive oxygen species. To the best of our knowledge, the findings of the present study are the first to suggest that combining TAM with NDAM may be a potential combination therapy for the treatment of breast cancer and may have the potential to minimize or eliminate the side effects associated with high doses of TAM.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  14. Ismail S, Haris K, Abdul Ghani AR, Abdullah JM, Johan MF, Mohamed Yusoff AA
    J Asian Nat Prod Res, 2013 Sep;15(9):1003-12.
    PMID: 23869465 DOI: 10.1080/10286020.2013.818982
    Aloe emodin, one of the active compounds found in Aloe vera leaves, plays an important role in the regulation of cell growth and death. It has been reported to promote the anti-cancer effects in various cancer cells by inducing apoptosis. However, the mechanism of inducing apoptosis by this agent is poorly understood in glioma cells. This research is to investigate the apoptosis and cell cycle arrest inducing by aloe emodin on U87 human malignant glioma cells. Aloe emodin showed a time- and dose-dependent inhibition of U87 cells proliferation and decreased the percentage of viable U87 cells via the induction of apoptosis. Characteristic morphological changes, such as the formation of apoptotic bodies, were observed with confocal microscope by Annexin V-FITC/PI staining, supporting our viability study and flow cytometry analysis results. Our data also demonstrated that aloe emodin arrested the cell cycle in the S phase and promoted the loss of mitochondrial membrane potential in U87 cells that indicated the early event of the mitochondria-induced apoptotic pathway.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  15. Lim SH, Wu L, Burgess K, Lee HB
    Anticancer Drugs, 2009 Jul;20(6):461-8.
    PMID: 19387338 DOI: 10.1097/CAD.0b013e32832b7bee
    Conventional cytotoxic anticancer drugs that target all rapidly dividing cells are nonselective in their mechanism of action, because they disrupt essential components that are crucial to both malignant and proliferating normal cells. Instead, targeting cellular functions that are distinctly different between normal and cancer cells may provide a basis for selective killing of tumor cells. One such strategy that is still largely unexplored is to utilize the relatively higher negative mitochondrial membrane potential in carcinoma cells compared with adjacent normal epithelial cells to enhance accumulation and retention of cytotoxic lipophilic cations in the former. In this study, the anticancer activities of a new class of rosamines with cyclic amine substituents and their structure-activity relationships were investigated. From an in-vitro cell growth inhibition assay, 14 of the rosamines inhibited the growth of human leukemia HL-60 cells by 50% at micromolar or lower concentrations. Derivatives containing hydrophilic substituents had less potent activity, whereas aryl substitution at the meso position conferred extra activity with thiofuran and para-iodo aryl substitutions being the most potent. In addition, both compounds were at least 10-fold more cytotoxic than rhodamine 123 against a panel of cell lines of different tissue origin and similar to rhodamine 123, exhibited more cytotoxicity against cancer cells compared with immortalized normal epithelial cells of the same organ type. In subsequent experiments, the para-iodo aryl substituted rosamine was found to localize exclusively within the mitochondria and induced apoptosis as the major mode of cell death. Our results suggest that these compounds offer potential for the design of mitochondria-targeting agents that either directly kill or deliver cytotoxic drugs to selectively kill cancer cells.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  16. Tan JW, Kim MK
    Molecules, 2016 Apr 25;21(5).
    PMID: 27120593 DOI: 10.3390/molecules21050548
    Alzheimer's disease is considered one of the major neurodegenerative diseases and is characterized by the production of β-amyloid (Aβ) proteins and progressive loss of neurons. Biochanin A, a phytoestrogen compound found mainly in Trifolium pratense, was used in the present study as a potential alternative to estrogen replacement therapy via the investigation of its neuroprotective effects against Aβ25-35-induced toxicity, as well as of its potential mechanisms of action in PC12 cells. Exposure of these cells to the Aβ25-35 protein significantly increased cell viability loss and apoptosis. However, the effects induced by Aβ25-35 were markedly reversed in the present of biochanin A. Pretreatment with biochanin A attenuated the cytotoxic effect of the Aβ25-35 protein by decreasing viability loss, LDH release, and caspase activity in cells. Moreover, we found that expression of cytochrome c and Puma were reduced, alongside with the restoration of Bcl-2/Bax and Bcl-xL/Bax ratio in the presence of biochanin A, which led to a decrease in the apoptotic rate. These data demonstrate that mitochondria are involved in the protective effect of biochanin A against Aβ25-35 and that this drug attenuated Aβ25-35-induced PC12 cell injury and apoptosis by preventing mitochondrial dysfunction. Thus, biochanin A might raise a possibility as a potential therapeutic agent for Alzheimer's disease and other related neurodegenerative diseases.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  17. Li L, Zhang W, Desikan Seshadri VD, Cao G
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):3029-3036.
    PMID: 31328556 DOI: 10.1080/21691401.2019.1642902
    Nowadays, the synthesis and characterization of gold nanoparticles (AuNPs) from plant based extracts and effects of their anticancer have concerned an important interest. Marsdenia tenacissima (MT), a conventional Chinese herbal medicine, has long been used for thousands of years to treat tracheitis, asthma, rheumatism, etc. In this present study, we optimize the reaction of parameters to manage the nanoparticle size, which was categorized by high-resolution transmission electron microscopy (HR-TEM). A different characterization method, for example, UV-visible spectroscopy (UV-vis), fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were performed to consider the synthesized AuNPs getting from the MT leaf extract. The MT-AuNPs were analyzed for their cytotoxicity property against HepG2 cells by MTT analysis. The apoptosis was evaluated by using reactive oxygen species (ROS), migration assay, mitochondrial membrane potential (MMP) and apoptotic protein expression. Interestingly, the findings of our study observed the cytotoxicity effect of synthesized MT-AuNPs at a concentration of 59.62 ± 4.37 μg after 24 hrs treatment. Apoptosis was induced by the MT-AuNPs with enhanced ROS, changed MMP and inhibit the migration assay. Finally, the apoptosis was confirmed by the considerable up-regulation of Bax, caspase-9 and caspase-3, while the anti-apoptotic protein expressions of Bcl-2 and Bcl-XL were down-regulated. Although, in this studies, we evaluated the characterization, synthesis and anticancer action of gold nanoparticles from MT (MT-AuNPS) helpful for liver cancer therapeutics.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  18. Fakai MI, Abd Malek SN, Karsani SA
    Life Sci, 2019 Mar 01;220:186-193.
    PMID: 30682342 DOI: 10.1016/j.lfs.2019.01.029
    AIMS: Chalepin, a naturally occurring compound isolated from Ruta angustifolia have been shown to exert a promising anticancer activity through various mechanisms. Hence, the need to investigate the apoptotic inducing ability of chalepin in MCF7 cells by various detection assays.

    MATERIALS AND METHODS: Cytotoxicity screening of chalepin against MCF7 cells was conducted using SRB assay. Apoptosis induction was examined by established morphological and biochemical assays including phase contrast and Hoechst/PI staining fluorescence microscope. Similarly, Annexin-V/FITC and TUNEL assays were conducted using flow cytometry whereas caspase-3 activity was evaluated using microplate reader.

    KEY FINDINGS: The result indicates remarkable cytotoxic activity against MCF7 cells, whereas it shows moderate cytotoxic activity against MDA-MB231 cells. Interestingly, chalepin did not present any toxicity against MRC5 normal cell line. Morphological examination using both phase contrast and fluorescence microscope displays typical apoptotic features such as membrane blebbing, DNA fragmentation, chromatin condensation and apoptotic bodies' formation following chalepin treatment against MCF7 cells at different concentration for 48 h. Apoptosis induction is significantly associated with externalisation of phosphatidylserine, and DNA fragmentation in MCF7 cells chalepin treated cells when compared with control. The protein expressions of caspase-8, 9 and cleaved PARP1 were upregulated which correlated well with increased caspase-3 activity.

    SIGNIFICANCE: From our recent findings, chalepin was able to induced apoptosis in MCF7 cells and therefore, could be evaluated further as a potential source of anticancer agent for cancer treatment such as breast cancer.

    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  19. Taha MM, Sheikh BY, Salim LZ, Mohan S, Khan A, Kamalidehghan B, et al.
    Cell Mol Biol (Noisy-le-grand), 2016 May 30;62(6):97-101.
    PMID: 27262811
    Nigella sativa is also known for its properties as a traditional herbal healing for many ailments. In this study, the anticancer properties of thyomquinone (TQ), the active ingredient of N. sativa, were studied using ovarian cancer cell line (Caov-3 cells). The anti-proliferative activity of TQ was determined using MTT and the apoptosis was investigated using Flowcytometry and Annexin-V Assays. Multiparameteric cytotoxicity bioassays were used to quantify the changes in cell permeability and mitochondrial membrane potential. Reactive oxygen species (ROS) and apoptosis-involved cell markers were examined to verify cell death mechanism. The MTT-assay showed that TQ induces anti-proliferative activity on Caov-3 with an IC50 of 6.0±0.03 μg/mL, without any cytotoxic activity towards WRL-68 normal hepatocytes. A significant induction of early phase of apoptosis was shown by annexin-V analysis. Treatment of Caov-3 cells with TQ induces decreases in plasma membrane permeability and mitochondrial membrane potential. Visible decrease in the nuclear area was also observed. A significant decrease is observed in Bcl-2 while Bax is down-regulated. TQ-triggered ROS-mediated has found to be associated with Hsp70 dysregulation, an indicator of oxidative injury. We found that TQ induced anti-cancer effect involves intrinsic pathway of apoptosis and cellular oxidative stress. Our results considered collectively indicated that thyomquinone may be a potential agent for ovarian cancer drug development.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  20. Lu MC, Li TY, Hsieh YC, Hsieh PC, Chu YL
    Environ Toxicol, 2018 Dec;33(12):1229-1236.
    PMID: 30188005 DOI: 10.1002/tox.22629
    Clinacanthus nutans has been used as herbal medicine with antidiabetic, blood pressure lowering, and diuretic properties in Singapore, Thailand, and Malaysia. The in vitro cellular study showed the chloroform extract possessed significant cytotoxicity against leukemia K562 and lymphoma Raji cells. The clinical study reported that administration of plant could treat or prevent relapse in 12 cancer patients. However, detailed mechanism of the anticancer effects and chemical profiles are not thoroughly studied. The chemical study did show that the acetone extract (MHA) exerted the highest antiproliferative effect on human leukemia MOLT-4 cells and lymphoma SUP-T1 cells in dose-dependent cytotoxicity. We found that the use of MHA increased apoptosis by 4.28%-43.65% and caused disruption of mitochondrial membrane potential (MMP) by 11.79%-26.93%, increased reactive oxygen species (ROS) by 19.54% and increased calcium ion by 233.83%, as demonstrated by annexin-V/PI, JC-1, H2 DCFDA, and Flou-3 staining assays, respectively. MHA-induced ER stress was confirmed by increase expression of CHOP and IRE-1α with western blotting assay. In conclusion, we identified good bioactivity in Clinacanthus nutans and recognize its potential effect on cancer therapy, but further research is needed to determine the use of the plant.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links