DESIGN: Preliminary assessment of serum levels of female hormones in women with or without T1DM. Then histological and immunological examinations were carried out on the pancreas, ovaries and uteri at different stages in non-obese diabetic (NOD) and Institute of Cancer Research (ICR) mice, as well as assessment of their fertility. A protein array was carried out to detect the changes in serum inflammatory cytokines. Furthermore, RNA-sequencing was used to identify the key abnormal genes/pathways in ovarian and uterine tissues of female NOD mice, which were further verified at the protein level.
RESULTS: Testosterone levels were significantly increased (P = 0.0036) in female mice with T1DM. Increasing age in female NOD mice was accompanied by obvious lymphocyte infiltration in the pancreatic islets. Moreover, the levels of serum inflammatory factors in NOD mice were sharply increased with increasing age. The fertility of female NOD mice declined markedly, and most were capable of conceiving only once. Furthermore, ovarian and uterine morphology and function were severely impaired in NOD female mice. Additionally, ovarian and uterine tissues revealed that the differentially expressed genes were primarily enriched in metabolism, cytokine-receptor interactions and chemokine signalling pathways.
CONCLUSION: T1DM exerts a substantial impairment on female reproductive health, leading to diminished fertility, potentially associated with immune disorders and alterations in energy metabolism.
METHODS: SLBH at 1 and 2g/kg/b.w. was given orally to streptozotocin (STZ)-nicotinamide-induced male diabetic rats for 28days. Metabolic parameters (fasting blood glucose-FBG and lipid profiles-LP and serum insulin) were measured by biochemical assays. Distribution and expression level of insulin, oxidative stress marker i.e. catalase, inflammatory markers i.e. IKK-β, TNF-α, IL-1β and apoptosis marker i.e. caspase-9 in the pancreatic islets were identified and quantified respectively by immunohistochemistry. Levels of NF-κβ in pancreas were determined by enzyme-linked immunoassay (ELISA).
RESULTS: SLBH administration to diabetic male rats prevented increase in FBG, total cholesterols (TC), triglyceride (TG) and low density lipoprotein (LDL) levels. However, high density lipoprotein (HDL) and serum insulin levels in diabetic rats receiving SLBH increased. Additionally, histopathological changes and expression level of oxidative stress, inflammation and apoptosis markers in pancreatic islets of diabetic rats decreased with increased expression level of insulin in the islets. LC-MS analysis revealed the presence of several compounds in SLBH that might be responsible for these effects.
CONCLUSIONS: SLBH has great potential to be used as agent to protect the pancreas against damage and dysfunction where these could account for its anti-diabetic properties.
METHODS: Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract.
RESULTS: GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (p<0.05 compared to non-treated diabetic rats). The extract possesses high in-vitro radical scavenging activities.
CONCLUSION: In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes.