Displaying publications 1 - 20 of 237 in total

  1. Yusof Abdullah, Mohd Reusmaazran Yusof, Azali Muhammad, Nadira Kamarudin, Paulus, Wilfred Sylvester, Nurazila Mat Zali, et al.
    The preparation, physical and mechanical properties of Al/B4C composites with 5 and 10 wt.% reinforcement content were investigated. In order to obtain the feedstock with a low powder loading, B4C mixtures containing fine powders were investigated to obtain the optimal particle packing. The experimental results indicated that the fine containing 5 and 10 wt.% particles are able to prepare the feedstock with a good flowability. The composites fabricated by powder metallurgy have low densities and homogeneous microstructures. Additionally there is no interface reaction observed between the reinforcement and matrix by XRD analysis. The hardness of Al/B4C composites prepared by powder metallurgy was high.
    Matched MeSH terms: Powders
  2. Ougi K, Okada K, Leong KH, Hayashi Y, Kumada S, Onuki Y
    Eur J Pharm Sci, 2020 Nov 01;154:105502.
    PMID: 32750421 DOI: 10.1016/j.ejps.2020.105502
    The purpose of this study was to investigate the effect of molecular mobility of water adsorbed by disintegrants on the hydrolytic degradation of active pharmaceutical ingredients (APIs). Fourteen different disintegrants were tested. First, powdered disintegrants were stored at conditions of 40 °C/75% relative humidity ("humid conditions") and their T2 relaxation times were measured by time-domain nuclear magnetic resonance for examination of the molecular mobility of water adsorbed by the disintegrant. From the observed T2 values, the water molecular mobility was fully characterized. In particular, the molecular mobility of water adsorbed by crospovidones was much higher than the molecular mobility of water adsorbed by the other test disintegrants because of longer T2 values. The next study examined the hydrolytic degradation of acetylsalicylic acid (ASA), a model moisture-sensitive API, stored under humid conditions. Physical mixtures of ASA and disintegrants or their model tablets were used as test samples, and they were stored for 7 d. The disintegrants contained in the samples clearly affected the ASA degradation: the most significant ASA degradation was observed for the crospovidone-containing samples. Finally, we analyzed the effect of the molecular mobility of water adsorbed by disintegrants on the ASA degradation by the least absolute shrinkage and selection operator (Lasso) regression techniques. As in the T2 experiment, various properties of disintegrants (i.e., water content, pH, and water activity) were used in this experiment as the explanatory variables. From the Lasso analysis, we successfully showed that the higher molecular mobility of water adsorbed by disintegrants significantly enhanced ASA degradation. These findings provide profound insights into the chemical stability of moisture-sensitive APIs in tablets.
    Matched MeSH terms: Powders
  3. Chin, C.K., Huda, N., Yang, T.A.
    The aim of this study was to produce a high-protein, wet yellow noodle by the incorporation of surimi powder as a protein source and evaluate the effects of the physicochemical and sensory properties of the
    noodle. The surimi powder was prepared by oven drying the wet surimi at 60oC until the moisture content was below 10%. Five concentration levels of surimi powder substitutions were used (0, 5, 10, 15 and 20%), and as a result, the noodles showed a trend that significantly increased (P
    Matched MeSH terms: Powders
  4. Julie Juliewatty Mohamed, Mohd Riduan, Hutagalung, Sabar Derita, Zainal Arifin Ahmad
    Dielectric material CaCu3Ti4O12 (CCTO) prepared by solid state technique, was calcined at different temperatures (700 - 1000 o C) for 6 and 12 hours. The calcined powder were analysed by XRD to identify the CCTO formation. Then the microstructure was observed by SEM. The CCTO single phase formation was firstly detected on sample calcined at 700 o C for 12 hours. The microstructure obtained shows the particles were spherical in shape. The grain getting larger as calcination temperature was increased.
    Matched MeSH terms: Powders
  5. Md Shah AU, Hameed Sultan MT, Safri SNA
    Polymers (Basel), 2020 Jun 04;12(6).
    PMID: 32512848 DOI: 10.3390/polym12061288
    Six impact energy values, ranging from 2.5 J to 10 J, were applied to study the impact properties of neat epoxy and bamboo composites, while six impact energy values, ranging from 10 J to 35 J, were applied on bamboo/glass hybrid composites. Woven glass fibre was embedded at the outermost top and bottom layer of bamboo powder-filled epoxy composites, producing sandwich structured hybrid composites through lay-up and molding techniques. A drop weight impact test was performed to study the impact properties. A peak force analysis showed that neat epoxy has the stiffest projectile for targeting interaction, while inconsistent peak force data was collected for the non-hybrid composites. The non-hybrid composites could withstand up to 10 J, while the hybrid composites showed a total failure at 35 J. It can be concluded that increasing the filler loading lessened the severity of damages in non-hybrid composites, while introducing the woven glass fibre could slow down the penetration of the impactor, thus lowering the chances of a total failure of the composites.
    Matched MeSH terms: Powders
  6. Song J, Cha L, Sillanpää M, Sainio T
    Water Sci Technol, 2023 Apr;87(7):1672-1685.
    PMID: 37051790 DOI: 10.2166/wst.2023.083
    Excessive phosphorus causes eutrophication problems. The adsorptive removal of phosphate is prevalent and practical in large-scale applications, such as column adsorption. A metal organic framework (MOF)-enhanced layered double hydroxide (LDH) adsorbent material was developed and studied for batch adsorption and then combined with polyacrylonitrile (PAN) to form MOF/LDH/PAN composite beads working as a functional material for columns. Scanning electron microscopy (SEM) images showed the well-dispersed adsorbent powder in porous composite beads. The Fowler-Guggenheim isotherm model described the phosphate adsorption behavior of the MOF/LDH powder with a maximum capacity of 74.96 mg P/g. Mass transfer in the composite beads was successfully described with the Fickian diffusion model. The composite-packed fixed bed treated 37.95 BVs of the influent (55.51 mg P/L phosphate solution) and achieved an uptake of 18.92 mg P/g, with a removal efficiency of 96.42%, before the breakthrough point in the column study. The phosphate-loaded composite bed was regenerated with 0.1 M NaOH to 70% efficiency within 30 BVs. The polymer composite can be considered a practical solution for adsorption-based water treatment applications in tank and column processes where powder adsorbents cannot be applied.
    Matched MeSH terms: Powders
  7. Mardziah CM, Sopyan I, Hamdi M, Ramesh S
    Med J Malaysia, 2008 Jul;63 Suppl A:79-80.
    PMID: 19024993
    Improvement of the mechanical properties of hydroxyapatite (HA) can be achieved by the incorporation of metal. In addition, incorporation of strontium ion into HA crystal structures has been proved effective to enhance biochemical properties of bone implant. In this research, strontium-doped HA powder was developed via a sol-gel method to produce extraordinarily fine strontium-doped HA (Sr-doped HA) powder. XRD measurement had shown that the powder contained hydroxyapatite phase only for all doping concentration except for 2%, showing that Sr atoms have suppressed the appearance of beta-TCP as the secondary phase. Morphological evaluation by FESEM measurement shows that the particles of the Sr-doped HA agglomerates are globular in shape with an average size of 1-2 microm in diameter while the primary particles have a diameter of 30-150 nm in average.
    Matched MeSH terms: Powders/chemistry
  8. Etti CJ, Yusof YA, Chin NL, Mohd Tahir S
    J Diet Suppl, 2017 Mar 04;14(2):132-145.
    PMID: 27487244
    The tableting properties of Labisia pumila herbal powder, which is well known for its therapeutic benefits was investigated. The herbal powder was compressed into tablets using a stainless steel cylindrical uniaxial die of 13-mm- diameter with compaction pressures ranging from 7 to 25 MPa. Two feed weights, 0.5 and 1.0 g were used to form tablets. Some empirical models were used to describe the compressibility behavior of Labisia pumila tablets. The strength and density of tablets increased with increase in compaction pressure and resulted in reduction in porosity of the tablets. Smaller feeds, higher forces and increase in compaction pressure, contributed to more coherent tablets. These findings can be used to enhance the approach and understanding of tableting properties of Labisia pumila herbal powder tablets.
    Matched MeSH terms: Powders/chemistry*
  9. Phing PL, Abdullah A, Sin CL, Foong SCY
    Acta Sci Pol Technol Aliment, 2022 2 18;21(1):111-122.
    PMID: 35174693 DOI: 10.17306/J.AFS.0901
    BACKGROUND: Bintangor oranges are a mandarin species that is abundant in vitamin C and beta-carotene. However, due to its short shelf life, the fresh fruit can be converted into powder form, which is comparatively more stable.

    METHODS: This study compares the effects of spray drying, freeze drying, drum drying, vacuum oven drying, and convection oven drying on the physicochemical properties of Bintangor orange powder, including vitamin C and total carotenoid content. The physicochemical properties analyzed for the powders were color analysis, moisture content, water activity, hygroscopicity, degree of caking, wettability, flowability, water solubility index, and bulk density.

    RESULTS: Our results showed that freeze dried and convection oven dried powders retained their color so that the powder was the same as the original puree. All powders used in this showed an acceptable moisture content level, with a range of 2.11–2.31%. Spray dried and drum dried powders had the lowest value of moisture content and water activity. Moreover, spray dried powders showed the lowest value in hygroscopicity and bulk density and took the shortest time to wet the powder. The highest solubility and flowability properties were 12.99%, 0.39 g/mL, 18.39 s, 96.08%, and 19.17°, respectively. However, the freeze drying method retained the highest value for both nutritional pigments of vitamin C and total carotenoid content, 18.31 mg/g and 91.32 μg/g, respectively.

    CONCLUSIONS: Freeze drying is the most suitable drying method with favorable powder properties compared to spray drying, drum drying, vacuum oven drying and convection oven drying.

    Matched MeSH terms: Powders/chemistry
  10. Nyam KL, Leao SY, Tan CP, Long K
    J Food Sci Technol, 2014 Dec;51(12):3830-7.
    PMID: 25477650 DOI: 10.1007/s13197-012-0902-x
    Roselle (Hibiscus sabdariffa L.) seed is a valuable food resource as it has an excellent source of dietary fibre. Therefore, this study examined the functional properties of roselle seeds. Replacement of cookie flour with roselle seed powder at levels of 0-30 % was investigated for its effect on functional and nutritional properties of cookies. Among the four formulations cookies, the most preferred by panelists was 20 % roselle seed powder cookie (F3), followed by 10 % roselle seed powder cookie (F2) and 30 % roselle seed powder cookie (F4). The least preferred formulation among all was control cookie (F1). Cookie with 20 % roselle seed powder added showed higher content of total dietary fibre (5.6 g/100 g) as compared with control cookie (0.90 g/100 g). Besides that, cookies incorporated with roselle seed powder exhibited improved antioxidant properties. Thus, roselle seed powder can be used as a dietary fibre source and developed as a functional ingredient in food products.
    Matched MeSH terms: Powders
  11. Fikry M, Yusof YA, M Al-Awaadh A, Abdul Rahman R, Chin NL, Ghazali HM
    Antioxidants (Basel), 2019 Jul 18;8(7).
    PMID: 31323854 DOI: 10.3390/antiox8070226
    Full-fat roasted date seeds are considered an excellent source of antioxidants which can treat many diseases. The specific objectives were to investigate the effect of roasting temperature and time on the hardness of whole seeds, moisture content of the roasted date seeds powder, DPPH radical scavenging activity, total phenolic contents, extraction yield, pH, browning index and sensory properties of the brew prepared from the full-fat roasted date seeds and to construct descriptive models that could describe this effect. Date seeds were roasted at three temperatures (160, 180 and 200 °C) for different period of times (10, 20 and 30 min) using a natural conventional oven; then grinded and next brewed. Hardness of whole seeds, moisture content of the seeds powder, DPPH radical scavenging activity and total phenolic contents, extraction yield, pH and browning index and sensory properties of the brew were significantly affected by the roasting conditions. The statistical results indicated that the proposed model could adequately describe the measured properties. Strong correlations have been found among the properties of the brew as well. The producers of the date seeds brew can utilize these results for controlling the roasting process.
    Matched MeSH terms: Powders
  12. Sanwiriya, P., Suleiman, N.
    The present work was aimed to investigate the effect of drying methods (oven drying, foam mat drying) and temperatures (40°C, 60°C) on the nutritional characteristics of red- and yellow-watermelon rinds. It was found that foam mat drying produced the best results for preserving the most nutrients as compared to the conventional oven drying for both red- and yellow watermelon rinds. Temperature is a significant parameter that affects the nutritional characteristics of watermelon rinds powder for both methods. Finding suggests that foam mat drying at 40°C was the best method for producing watermelon rinds powder as it requires shorter treatment time and gave the best retention of protein and carbohydrate.
    Matched MeSH terms: Powders
  13. Zakaria MY, Sulong AB, Muhamad N, Raza MR, Ramli MI
    Mater Sci Eng C Mater Biol Appl, 2019 Apr;97:884-895.
    PMID: 30678979 DOI: 10.1016/j.msec.2018.12.056
    Titanium-ceramic composites are potential implant material candidates because of their unique mechanical properties and biocompatibility. This review focused on the latest advancement in processing of titanium-ceramic materials. Previously, titanium-ceramic incorporated using different coating techniques, i.e., plasma spraying and electrophoretic depositions, to enhance the biocompatibility of the implants. A major drawback in these coating methods is the growth of tissue at only the surface of the composite and might peel off over time. Recently, metal-ceramic composite was introduced via powder metallurgy method such as powder injection moulding. A porous structure can be obtained via powder metallurgy. Producing a porous titanium-ceramic structure would improve the mechanical properties, biocompatibility and tissue growth within the structure. Hence, further research needed to be done by considering the potential of powder injection moulding method which offer lower costs and more complex shapes for future implant.
    Matched MeSH terms: Powders
  14. Abdullah Z, Taip FS, Kamal SMM, Rahman RZA
    Foods, 2020 Aug 26;9(9).
    PMID: 32858797 DOI: 10.3390/foods9091177
    The moisture content of a powder is a parameter crucial to be controlled in order to produce stable products with a long shelf life. Inferential control is the best solution to control the moisture content due to difficulty in measuring this variable online. In this study, fundamental and empirical approaches were used in designing the nonlinear model-based inferential control of moisture content of coconut milk powder that was produced from co-current spray dryer. A one-dimensional model with integration of reaction engineering approach (REA) model was used to represent the dynamic of the spray drying process. The empirical approach, i.e., nonlinear autoregressive with exogenous input (NARX) and neural network, was used to allow fast and accurate prediction of output response in inferential control. Minimal offset (<0.0003 kg/kg) of the responses at various set points indicate high accuracy of the neural network estimator. The nonlinear model-based inferential control was able to provide stable control response at wider process operating conditions and acceptable disturbance rejection. Nevertheless, the performance of the controller depends on the tuning rules used.
    Matched MeSH terms: Powders
  15. Brishti FH, Chay SY, Muhammad K, Ismail-Fitry MR, Zarei M, Karthikeyan S, et al.
    Food Res Int, 2020 12;138(Pt B):109783.
    PMID: 33288169 DOI: 10.1016/j.foodres.2020.109783
    Mung bean is an inexpensive yet sustainable protein source. Current work compared the effects of freeze (FD), spray (SD) and oven drying (OD), on mung bean protein isolate (MBPI) produced on pilot scale. All samples showed no dissociation of protein subunits and were thermally stable (Td = 157.90-158.07 °C). According to morphological studies, FD formed a porous protein while SD and OD formed wrinkled and compact crystals, respectively. FD and SD formed elastic gels with better gelling capacity than OD (aggregated gel). FD showed exceptional protein solubility, water and oil absorption capacity (4.23 g/g and 8.38 g/g, respectively). SD demonstrated the smallest particle size, excellent emulsion activity index (29.21 m2/g) and stability (351.90 min) and the highest β-sheet amount (37.61%). FTIR spectra for all samples showed characteristic peaks which corresponded well to the secondary structure of legume proteins. Rheological analysis revealed that gelation temperature for all MBPI lied around 90 °C. Current work described the different final properties achieved for MBPI produced under different drying techniques that allowed tailoring for different food systems, whereby FD is ideal for meat extender, SD is suitable for meat emulsion while OD is suitable in general protein-based application.
    Matched MeSH terms: Powders
  16. Majid AMA, Rahiman MHF, Wong TW
    Int J Pharm, 2021 Aug 10;605:120786.
    PMID: 34111546 DOI: 10.1016/j.ijpharm.2021.120786
    This study developed a tester where the powder flow was characterized using a low sample mass (2 g) and impact instead of dispersion mechanism to mitigate test space constraint. An impact chamber was established where the test powder bed of seven lactose grades was weight-impacted to produce impact crater and ejecta, and imaged quantitatively to determine crater profiling signature (crater depth), regional topography (ejecta roughness), Otsu threshold (bed continuity) and edge segmentation (bed deformation). The Hausner ratio (HR) and Carr's index (CI) values of lactose, and their powder dispersion distance and surface area characteristics evaluated by gas-pressurized dispersibility test were examined as reference method. The crater signature profiling and regional topography were correlated to HR, CI, dispersive distance and surface area. A poorer powder flow was characterized by higher values of crater signature profiling, regional topography, HR, CI, and lower dispersive distance and surface area. The crater signature profiling and regional topography values were higher with smaller and rougher lactose particles that were cohesive. The powder impact flow is a viable non-dispersive approach to characterize powder flowability using a small sample mass and test space.
    Matched MeSH terms: Powders
  17. Cik Rohaida, C.H., Idris, B., Rusnah, M., Mohd Reusmaazran, Y., Narimah, A.B.
    Phase composition of calcium phosphate ceramic is a characteristic directly related to the biological response of implants due to the differences in mechanical and biochemical properties of these compounds. The biodegradation rate of biphasic calcium phosphate (BCP) can be controlled by altering the HA to β-TCP ratios. In this study the crystalline phase evolution of BCP synthesized via precipitation from aqueous solution of (NH4)2PO4 titrated into heated solution of Ca (NO3)2 was evaluated. The resulting powder was fabricated into porous scaffold using polyurethane foam method. Bulk powders were sintered from 700 - 1400°C to determine the most significant sintering temperature to obtain a stable and well crystallize BCP phases. The porous scaffolds were then sintered at selected temperature and the effects of various sintering times from 5,7,9,11,13 and 15 h were investigated. Bulk powders were characterized by dilatometer, IR analysis and XRD and porous scaffolds were analyzed by XRD and SEMEdx. RIR method was performed to show that the HA to β-TCP ratios were increased with increasing of sintering time and reached the maximum HA value at 11h. It is found that, the possibilities to manipulate the HA to β-TCP ratios in BCP porous scaffold by just controlling the sintering time of the scaffold without controlling the starting powder characteristics.
    Matched MeSH terms: Powders
  18. Ng, S.H., Wan Rosli, W.l.
    The proximate compositions, total dietary fibre (TDF) content, textural properties and sensory acceptability of yeast breads formulated with 0%, 2%, 4% and 6% of cornsilk powder (CSP) were studied. The protein, ash and TDF contents of yeast breads were increased in line with the CSP level added whereas moisture content was decreased. Yeast bread added with 6% CSP recorded the highest content of TDF (5.91%), protein (9.76%) and ash (1.03%) compared to other formulation of yeast breads containing lower percentage of CSP. Besides, texture profile analysis (TPA) reported that the firmness, gumminess and chewiness of yeast breads increased directly proportional to the level of CSP added mainly due to higher content of TDF and lower content of moisture. However, for the yeast bread added with 2%CSP, there were no significant differences compared with control yeast bread. Among all cornsilk-based yeast bread, formulation containing 2% CSP had the highest scores for all attributes including overall acceptance and there were no significant differences with control yeast bread. The present study indicated that the addition of 2% CSP could be an effective way to produce functional yeast bread without changing negatively its desirable textural and sensory acceptability.
    Matched MeSH terms: Powders
  19. Nik Anisah Nik Ngah, Mohamad Awang, Kartini Kamaruddin
    This aim of this study is to study the effects of various contents of Automotive Windscreen Glass Waste Powder (WGWP) as a cement replacement. Mortar incorporating several compositions of WGWP (0%, 5%, 10%, 15% and 20%) by weight of cement was prepared. Three batching systems of cement to sand (C:S) ratios of 1:2.5 superplasticizers (SP), 1:3.0 SP and 1:3.5 SP was also employed. Fixed water to cement (w/c) ratio of 0.5 was used. The samples were water cured and the assessment of the strength performance of mortar cubes carried out at 7 and 28 days. Studies conducted have shown that WGWP has good pozzolanic properties. In term of compressive strength, it was observed that employing C:S ratio of 1:3.5 SP is better than 1:2.5 SP and 1:3.0 SP.
    Matched MeSH terms: Powders
  20. Jiang Y, Ling TC, Mo KH, Shi C
    J Environ Manage, 2019 Jul 15;242:440-449.
    PMID: 31071620 DOI: 10.1016/j.jenvman.2019.04.098
    In light of concerns relating to improper waste disposal and resources preservation, reclamation of the discarded glass in construction materials had been extensively carried out since 1963. In the past decade, although more than 100 papers associated with the use of glass powder (GP) in the micron level scale were published, comprehensive review of all practical applications in cement-based materials and construction products is not available. This paper therefore provides a summary of the body of knowledge on the interaction and effects of using GP in cement-based and extended construction materials. This review concludes that GP is an innovative and promising eco-supplementary cementitious material. Beyond that, use of GP is demonstrated to be potentially beneficial as a precursor in geopolymer and suitable for manufacturing eco-cement, artificial lightweight aggregate and composite phase change material. The multiple applications of GP are seen as an important step towards waste glass recycling as a sustainable construction material and for the overall betterment of the industry.
    Matched MeSH terms: Powders
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links