Displaying all 20 publications

Abstract:
Sort:
  1. Jamil K, Abdul Rashid AH, Ibrahim S
    J Pediatr Orthop B, 2013 Nov;22(6):608.
    PMID: 24056210 DOI: 10.1097/BPB.0b013e328364b65c
    Matched MeSH terms: Bone Development*
  2. Nor Aini J, Poh BK, Chee WS
    Pediatr Int, 2013 Apr;55(2):223-8.
    PMID: 23253297 DOI: 10.1111/ped.12035
    BACKGROUND: The aim of this cross-sectional study was to examine the ability of a children's physical activity questionnaire (cPAQ) to assess physical activity levels and bone health status of school children.
    METHODS: Subjects consisted of 90 pre-pubertal and early pubertal children aged 9-10 years. Components of physical activity were assessed using metabolic intensity (METPA) scores and mechanical bone strain (MECHPA) scores. An Actical accelerometer was used to validate METPA scores among a sub-sample of 57 children. Reliability was assessed by test-retesting all children after a 7 day interval. Whole body bone mineral content (BMC) was measured using dual-energy X-ray absorptiometry.
    RESULTS: The reliability of cPAQ for assessment of various categories of physical activity was moderate to high (r ranged from 0.55 to 0.68, P < 0.001). Agreement was fair for repeated use of the cPAQ (Cohen's kappa = 0.32, P < 0.001). Bland-Altman plots show cPAQ had fair agreement only for moderate activity (mean difference 35.4 min/week; 95% limits of agreement -434.0 to +504.9 min/week). Approximately 69.6% of children were correctly classified (into the same or adjacent quartiles) according to the quartiles of BMC for METPA score, and 58.7% were correctly classified according to MECHPA score. Only 10.9% and 12.0% of children were grossly misclassified as compared to METPA and MECHPA scores, respectively.
    CONCLUSIONS: The cPAQ has reasonable validity in assessing moderate physical activity, and it demonstrates good ability to accurately classify children according to BMC. It fails, however, to assess other activity levels, suggesting that objective measurement is still a better method of assessment of physical activity among primary school children.
    Matched MeSH terms: Bone Development/physiology*
  3. Che Ibrahim NH, Md Shukri N
    Malays Fam Physician, 2017;12(1):35-36.
    PMID: 28503274 MyJurnal
    A common bony protrusion that occurs over the hard palate is sometimes mistaken for a malignancy especially when it is large. This bony growth is a torus palatinus (TP), which is a benign bony prominence over the hard palate. It occurs most commonly in bilateral multiple form, and is often located at the canine to premolar area. A basic knowledge of the assessment and management of TP is important, particularly for the first-line family physician to ensure that the correct information is given to the patient.
    Matched MeSH terms: Bone Development
  4. Ooi FK, Singh R, Singh HJ, Umemura Y, Nagasawa S
    J Physiol Sci, 2011 Nov;61(6):487-95.
    PMID: 21870136 DOI: 10.1007/s12576-011-0169-4
    The effects of deconditioning on exercise-induced bone gains in rats were investigated in 12-week-old female WKY rats performing a standard jumping exercise regimen for either 8, 12 or 24 weeks, followed by sedentary periods of either 24, 12 or 0 weeks, respectively. Age-matched controls received no exercise over the same period. At the end of the training/sedentary period, the tibiae were harvested for analyses of bone parameters. Gains in tibial fat-free dry weight decayed within 12 weeks of deconditioning, but gains in tibial ultimate bending force (strength), maximum diameter and cortical area were still present at 12 weeks of deconditioning. With the exception of cortical area, all other exercise-induced bone gains decayed by the 24th week of deconditioning. It appears that the decay in exercise-induced bone gains in strength, physical and morphological properties is not uniform, and that gains in fat-free dry weight seem to decay earlier.
    Matched MeSH terms: Bone Development/physiology*
  5. Chen ST, Jee FC, Mohamed TB
    J Singapore Paediatr Soc, 1990;32(3-4):97-101.
    PMID: 2133763
    Between 1976 and 1979, hand radiographs of 112 Malay children, 55 males and 57 females aged from 12 to 28 months, from higher socio-economic class families were obtained and studied by two radiologists. These children were part of a longitudinal study on growth and development. A total of 268 hand and wrist radiographs were taken, which the radiologists read independently of each other using the Greulich and Pyle Atlas. The bone age was then compared with the chronological age and the difference, if any, was noted and 'scored'. It was found that 83.4% of cases for males and 94.8% of cases for females matched within the +/- 6 months discrepancy range. For practical purposes therefore, our population may use the Greulich-Pyle Atlas with a good degree of confidence. Typical hand radiographs of male and female Malay children at 12, 18 and 24 months of age are also presented and these may be used as standards for Malaysian children at the respective age groups.
    Matched MeSH terms: Bone Development/physiology*
  6. Khairani Idah Mokhtar, Noraini Abu Bakar, Azrul Fazwan Kharuddin
    MyJurnal
    Runt-related transcription factor 2 (RUNX2) plays important roles in osteoblast
    differentiation, tooth development and chondrocyte maturation; hence its involvement in
    craniofacial development is paramount. Mutation in RUNX2 is implicated with cleidocranial
    dysplasia; a bone development disorder, while single nucleotide polymorphism (SNP) in RUNX2 is
    associated with Class II/2 malocclusion. This study aimed to determine RUNX2 SNP of DNA marker
    (rs6930053) in malocclusion patients from local population. (Copied from article).
    Matched MeSH terms: Bone Development
  7. B. Hemabarathy Bharatham, Zariyantey Abdul Hamid, Nurnadiah Ahmad
    MyJurnal
    Biocompatibility and growth of osteoblast on bone scaffolds play an important role towards their therapeutic application.
    The presence of oxidative stress generated by bone scaffolds highly influences osteoblast growth and its functional
    performance. In this study in-vitro interaction of developed Alginate/Cockle Shell powder nanobiocomposite bone scaffold
    on osteoblast with regards to cytotoxicity and oxidative stress are evaluated. Cytotoxicity studies using MTT assays
    revealed a significant increase in viability of cultured osteoblast in the presences of the scaffold extracts. The growth of
    osteoblast on the scaffold were not deterred with the presence of any major oxidative stress factors as determined through
    oxidative stress profile studies using SOD, GSH and ROS assays. The nanobiocomposite scaffold evaluated in this study
    shows promising use in regards to facilitating osteoblast proliferation, growth and viability.
    Matched MeSH terms: Bone Development
  8. Alias MA, Buenzli PR
    Biomech Model Mechanobiol, 2018 Oct;17(5):1357-1371.
    PMID: 29846824 DOI: 10.1007/s10237-018-1031-x
    The geometric control of bone tissue growth plays a significant role in bone remodelling, age-related bone loss, and tissue engineering. However, how exactly geometry influences the behaviour of bone-forming cells remains elusive. Geometry modulates cell populations collectively through the evolving space available to the cells, but it may also modulate the individual behaviours of cells. To factor out the collective influence of geometry and gain access to the geometric regulation of individual cell behaviours, we develop a mathematical model of the infilling of cortical bone pores and use it with available experimental data on cortical infilling rates. Testing different possible modes of geometric controls of individual cell behaviours consistent with the experimental data, we find that efficient smoothing of irregular pores only occurs when cell secretory rate is controlled by porosity rather than curvature. This porosity control suggests the convergence of a large scale of intercellular signalling to single bone-forming cells, consistent with that provided by the osteocyte network in response to mechanical stimulus. After validating the mathematical model with the histological record of a real cortical pore infilling, we explore the infilling of a population of randomly generated initial pore shapes. We find that amongst all the geometric regulations considered, the collective influence of curvature on cell crowding is a dominant factor for how fast cortical bone pores infill, and we suggest that the irregularity of cement lines thereby explains some of the variability in double labelling data as well as the overall speed of osteon infilling.
    Matched MeSH terms: Bone Development
  9. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    PeerJ, 2017;5:e3513.
    PMID: 28674665 DOI: 10.7717/peerj.3513
    BACKGROUND: Osteoprotegerin (OPG) is used for the systemic treatment of bone diseases, although it has many side effects. The aim of this study was to investigate a newly formulated OPG-chitosan gel for local application to repair bone defects. Recent studies have reported that immunodetection of osteopontin (OPN) and osteocalcin (OC) can be used to characterise osteogenesis and new bone formation.

    METHODS: The osteogenic potential of the OPG-chitosan gel was evaluated in rabbits. Critical-sized defects were created in the calvarial bone, which were either left unfilled (control; group I), or filled with chitosan gel (group II) or OPG-chitosan gel (group III), with rabbits sacrificed at 6 and 12 weeks. Bone samples from the surgical area were decalcified and treated with routine histological and immunohistochemical protocols using OC, OPN, and cathepsin K (osteoclast marker) antibodies. The toxicity of the OPG-chitosan gel was evaluated by biochemical assays (liver and kidney function tests).

    RESULTS: The mean bone growth in defects filled with the OPG-chitosan gel was significantly higher than those filled with the chitosan gel or the unfilled group (p bone repair and regeneration, highlighting its potential benefits for tissue engineering applications.

    Matched MeSH terms: Bone Development
  10. Rodriguez O, Stone W, Schemitsch EH, Zalzal P, Waldman S, Papini M, et al.
    Heliyon, 2017 Oct;3(10):e00420.
    PMID: 29034340 DOI: 10.1016/j.heliyon.2017.e00420
    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn(2+)), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro.
    Matched MeSH terms: Bone Development
  11. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:202-3.
    PMID: 15468888
    In this study the surface properties of two particulate coral and polyhydroxybutrate (PHB) were studied in order to characterize them prior to use in composite production. Coral powder and PHB particle were evaluated using scanning electron microscopy and confocal laser scanning microscopy, to measure surface porosity and pores size. The results showed that coral powder has multiple pleomorphic micropores cross each others give appearance of micro-interconnectivity. Some pore reached to 18 microm with an average porosity of 70%. PHB revealed multiple different size pores extended to the depth, with an average some times reach 25 microm and porosity 45%. These findings demonstrate that both coral and PHB have excellent pores size and porosity that facilitate bone in growth, vascular invasion and bone development. We believe that incorporation of coral powder into PHB will make an excellent composite scaffold for tissue engineering.
    Matched MeSH terms: Bone Development/physiology*
  12. Chin KY, Pang KL, Mark-Lee WF
    Int J Med Sci, 2018;15(10):1043-1050.
    PMID: 30013446 DOI: 10.7150/ijms.25634
    Bisphenol A (BPA) is an endocrine disruptor which can bind to the oestrogen receptor. It also possesses oestrogenic, antiandrogenic, inflammatory and oxidative properties. Since bone responds to changes in sex hormones, inflammatory and oxidative status, BPA exposure could influence bone health in humans. This review aimed to summarize the current evidence on the relationship between BPA and bone health derived from cellular, animal and human studies. Exposure to BPA (0.5-12.5 µM) decreased the proliferation of osteoblast and osteoclast precursor cells and induce their apoptosis. Bisphenol AF (10 nM) enhanced transforming growth factor beta signalling but bisphenol S (10 nM) inhibited Wnt signalling involved in osteoblast differentiation in vitro. In animals, BPA and its derivatives demonstrated distinct effects in different models. In prenatal/postnatal exposure, BPA increased femoral bone mineral content in male rats (at 25 ug/kg/day) but decreased femoral mechanical strength in female mice (at 10 µg/kg/day). In oestrogen deficiency models, BPA improved bone mineral density and microstructures in aromatase knockout mice (at very high dose, 0.1% or 1.0% w/w diet) but decreased trabecular density in ovariectomized rats (at 37 or 370 ug/kg/day). In contrast, bisphenol A diglycidyl ether (30 mg/kg/day i.p.) improved bone health in normal male and female rodents and decreased trabecular separation in ovariectomized rodents. Two cross-sectional studies have been performed to examine the relationship between BPA level and bone mineral density in humans but they yielded negligible association. As a conclusion, BPA and its derivatives could influence bone health and a possible gender effect was observed in animal studies. However, its effects in humans await verification from more comprehensive longitudinal studies in the future.
    Matched MeSH terms: Bone Development/drug effects
  13. Ng JS, Chin KY
    Int J Med Sci, 2021;18(3):604-614.
    PMID: 33437195 DOI: 10.7150/ijms.50680
    Chronic psychological stress affects many body systems, including the skeleton, through various mechanisms. This review aims to provide an overview of the factors mediating the relationship between psychological stress and bone health. These factors can be divided into physiological and behavioural changes induced by psychological stress. The physiological factors involve endocrinological changes, such as increased glucocorticoids, prolactin, leptin and parathyroid hormone levels and reduced gonadal hormones. Low-grade inflammation and hyperactivation of the sympathetic nervous system during psychological stress are also physiological changes detrimental to bone health. The behavioural changes during mental stress, such as altered dietary pattern, cigarette smoking, alcoholism and physical inactivity, also threaten the skeletal system. Psychological stress may be partly responsible for epigenetic regulation of skeletal development. It may also mediate the relationship between socioeconomic status and bone health. However, more direct evidence is required to prove these hypotheses. In conclusion, chronic psychological stress should be recognised as a risk factor of osteoporosis and stress-coping methods should be incorporated as part of the comprehensive osteoporosis-preventing strategy.
    Matched MeSH terms: Bone Development/physiology*
  14. Peake NJ, Hobbs AJ, Pingguan-Murphy B, Salter DM, Berenbaum F, Chowdhury TT
    Osteoarthritis Cartilage, 2014 Nov;22(11):1800-7.
    PMID: 25086404 DOI: 10.1016/j.joca.2014.07.018
    C-type natriuretic peptide (CNP) has been demonstrated in human and mouse models to play critical roles in cartilage homeostasis and endochondral bone formation. Indeed, targeted inactivation of the genes encoding CNP results in severe dwarfism and skeletal defects with a reduction in growth plate chondrocytes. Conversely, cartilage-specific overexpression of CNP was observed to rescue the phenotype of CNP deficient mice and significantly enhanced bone growth caused by growth plate expansion. In vitro studies reported that exogenous CNP influenced chondrocyte differentiation, proliferation and matrix synthesis with the response dependent on CNP concentration. The chondroprotective effects were shown to be mediated by natriuretic peptide receptor (Npr)2 and enhanced synthesis of cyclic guanosine-3',5'-monophosphate (cGMP) production. Recent studies also showed certain homeostatic effects of CNP are mediated by the clearance inactivation receptor, Npr3, highlighting several mechanisms in maintaining tissue homeostasis. However, the CNP signalling systems are complex and influenced by multiple factors that will lead to altered signalling and tissue dysfunction. This review will discuss the differential role of CNP signalling in regulating cartilage and bone homeostasis and how the pathways are influenced by age, inflammation or sex. Evidence indicates that enhanced CNP signalling may prevent growth retardation and protect cartilage in patients with inflammatory joint disease.
    Matched MeSH terms: Bone Development
  15. Dugdale AE, Chen ST, Hewitt G
    Am J Clin Nutr, 1970 Oct;23(10):1280-7.
    PMID: 5475659
    Matched MeSH terms: Bone Development
  16. Ibrahim N', Mohamed N, Soelaiman IN, Shuid AN
    Int J Environ Res Public Health, 2015 Oct;12(10):12958-76.
    PMID: 26501302 DOI: 10.3390/ijerph121012958
    Osteoporotic drugs are used to prevent fragility fractures, but their role in fracture healing still remains unknown. Thus, alternative agents with suitable mode of delivery are needed to promote fracture healing. This study was performed to investigate the effects of direct deliveries of lovastatin and tocotrienol to fracture sites on ossification-related gene expression in fracture healing in a postmenopausal osteoporosis model. Forty-eight Sprague Dawley female rats were divided into six groups. Group I comprised the sham-operated rats, while Groups II-VI were ovariectomized rats. After 8 weeks, the right tibiae of all rats were fractured and stabilized. Group I and Group II were given two single injections of lovastatin and tocotrienol carriers. Group III was given an estrogen preparation at 64.5 µg/kg daily via oral gavages. Group IV was injected with lovastatin particles (750 µg/kg), while Group V was injected with tocotrienol particles (60 mg/kg). Group VI received two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks, the gene expressions were measured. Group VI showed significantly higher gene expressions of osteocalcin, BMP-2, VEGF-α, and RUNX-2 compared to Group II. In conclusion, combined treatment of lovastatin and tocotrienol upregulated the expression of genes related to fracture healing.
    Matched MeSH terms: Bone Development/genetics
  17. Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau AS, Lee BK, et al.
    J Appl Microbiol, 2021 Apr;130(4):1307-1322.
    PMID: 32638482 DOI: 10.1111/jam.14776
    AIM: The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system.

    METHODS AND RESULTS: The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P bone and muscle compared to the aged rats (P bone.

    CONCLUSIONS: Lactobacillus fermentum DR9 appeared to be the strongest strain in modulation of musculoskeletal health during ageing.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study demonstrated the protective effects of the bacteria on muscle and bone through antioxidative and anti-inflammatory actions. Therefore, L. fermentum DR9 may serve as a promising targeted anti-ageing therapy.

    Matched MeSH terms: Bone Development/drug effects
  18. Madzuki IN, Lau SF, Mohamad Shalan NAA, Mohd Ishak NI, Mohamed S
    J Biosci, 2019 Sep;44(4).
    PMID: 31502578
    Chondrosenescence (chondrocyte senescence) and subchondral bone deterioration in osteoarthritic rats were analyzed after treatment with the estrogenic herb Labisia pumila (LP) or diclofenac. Osteoarthritis (OA) was induced in bilaterally ovariectomized (OVX) rats by injecting mono-iodoacetate into the right knee joints. Rats were grouped (n = 8) into nontreated OVX+OA control, OVX+OA + diclofenac (5 mg/kg) (positive control), OVX+OA + LP leaf extract (150 and 300 mg/kg) and healthy sham control. After 8 weeks' treatment, their conditions were evaluated via serum biomarkers, knee joint histology, bone histomorphometry, protein and mRNA expressions. The LP significantly reduced cartilage erosion, femur bone surface alteration, bone loss and porosity and increased trabecular bone thickness better than diclofenac and the non-treated OA. The cartilage catabolic markers' (matrix metalloproteinase (MMP)-13, RUNX2, COL10a, ERa, CASP3 and HIF-2 alpha) mRNA expressions were down-regulated and serum bone formation marker, PINP, was increased by LP in a dose-dependent manner. The LP (containing myricetin and gallic acid) showed protection against chondrosenescence, chondrocyte death, hypoxia-induced cartilage catabolism and subchondral bone deterioration. The bone and cartilage protective effects were by suppressing proteases (collagen break-down), bone resorption and upregulating subchondral bone restoration. The cartilage ER alpha over-expression showed a strong positive correlation with MMP-13, COL10 alpha1, histological, micro-computed tomography evidence for cartilage degradation and chondrosenescence.
    Matched MeSH terms: Bone Development/drug effects
  19. Norazlina M, Ima-Nirwana S, Abul Gapor MT, Abdul Kadir Khalid B
    Asia Pac J Clin Nutr, 2002;11(3):194-9.
    PMID: 12230232
    In this study the effects of vitamin E deficiency and supplementation on bone calcification were determined using 4-month-old female Sprague-Dawley rats. The rats weighed between 180 and 200 g. The study was divided in three parts. In experiment I the rats were given normal rat chow (RC, control group), a vitamin E deficient (VED) diet or a 50% vitamin E deficient (50%VED) diet. In experiment 2 the rats were given VED supplemented with 30 mg/kg palm vitamin E (PVE30), 60 mg/kg palm vitamin E (PVE60) or 30 mg/kg pure alpha-tocopherol (ATF). In experiment 3 the rats were fed RC and given the same supplements as in experiment 2. The treatment lasted 8 months. Vitamin E derived from palm oil contained a mixture of ATF and tocotrienols. Rats on the VED and 50%VED diets had lower bone calcium content in the left femur compared to the RC group (91.6 +/- 13.3 mg and 118.3 +/- 26.0 mg cf 165.7 +/- 15.2 mg; P < 0.05) and L5 vertebra (28.3 +/- 4.0 mg and 39.5 +/- 6.2 mg compared with 51.4 +/- 5.8 mg; P < 0.05). Supplementing the VED group with PVE60 improved bone calcification in the left femur (133.6 +/- 5.0 mg compared with 91.6 +/- 13.3 mg; P < 0.05) and L5 vertebra (41.3 +/- 3.3 mg compared with 28.3 +/- 4.0 mg; P < 0.05) while supplementation with PVE30 improved bone calcium content in the L5 vertebra (35.6 +/- 3.1 mg compared with 28.3 +/- 4.0 mg; P < 0.05). However, supplementation with ATF did not change the lumbar and femoral bone calcium content compared to the VED group. Supplementing the RC group with PVE30, PVE60 or ATF did not cause any significant changes in bone calcium content. In conclusion, vitamin E deficiency impaired bone calcification. Supplementation with the higher dose of palm vitamin E improved bone calcium content, but supplementation with pure ATF alone did not. This effect may be attributed to the tocotrienol content of palm vitamin E. Therefore, tocotrienols play an important role in bone calcification.
    Matched MeSH terms: Bone Development
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links