METHODS: This study followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA). A comprehensive search of online databases/search tools (Web of Science, Scopus, PubMed, Ovid, and Google Scholar) was conducted for all relevant studies published up until May 29, 2023. Only in-vitro studies comparing the adherence of Candida albicans to the digital and conventional acrylic resins were included. The quantitative analyses were performed using RevMan v5.3 software.
RESULTS: Fourteen studies were included, 11 of which were meta-analyzed based on Colony Forming Unit (CFU) and Optical Density (OD) outcome measures. The pooled data revealed significantly lower candida colonization on the milled digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (MD = - 0.36; 95%CI = - 0.69, - 0.03; P = 0.03 and MD = - 0.04; 95%CI = - 0.06, - 0.01; P = 0.0008; as measured by CFU and OD respectively). However, no differences were found in the adhesion of Candida albicans between the 3D-printed digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (CFU: P = 0.11, and OD: P = 0.20).
CONCLUSION: The available evidence suggests that candida is less likely to adhere to the milled digitally-fabricated acrylic resins compared to the conventional ones.
PURPOSE: The purpose of this in vitro study was to compare the adherence of Streptococcus spp. and Candida spp. on 3D-printed denture bases prepared at different build orientations with conventional heat-polymerized resin.
MATERIAL AND METHODS: Resin specimens (n=5) with standardized 28.3 mm2 surface area were 3D printed at 0 and 60 degrees, and heat-polymerized (3DP-0, 3DP-60, and HP, respectively). The specimens were placed in a Nordini artificial mouth (NAM) model and exposed to 2 mL of clarified whole saliva to create a pellicle-coated substratum. Suspensions of Streptococcus mitis and Streptococcus sanguinis, Candida albicans and Candida glabrata, and a mixed species, each at 108 cfu/mL were pumped separately into the model for 24 hours to promote microbial adhesion. The resin specimens were then removed, placed in fresh media, and sonicated to dislodge attached microbes. Each suspension (100 μL) was aliquoted and spread on agar plates for colony counting. The resin specimens were also examined under a scanning electron microscope. The interaction between types of specimen and groups of microbes was examined with 2-way ANOVA and then further analysis with Tukey honest significant test and Kruskal-Wallis post hoc tests (α=.05).
RESULTS: A significant interaction was observed between the 3DP-0, 3DP-60, and HP specimen types and the groups of microbes adhering to the corresponding denture resin specimens (Pcandida was 3.98-times lower on the 3DP-0 than that of HP (P
MAIN TEXT: In this review, we discuss alternative carbon metabolism as a metabolic adaptation strategy for the pathogenesis of C. glabrata. As the glyoxylate cycle is an important pathway in the utilization of alternative carbon sources, we also highlight the key metabolic enzymes in the glyoxylate cycle and its necessity for the pathogenesis of C. glabrata. Finally, we explore the transcriptional regulatory network of the glyoxylate cycle.
CONCLUSION: Considering evidence from Candida albicans and Saccharomyces cerevisiae, this review summarizes the current knowledge of the glyoxylate cycle as an alternative carbon metabolic pathway of C. glabrata.
LAY SUMMARY: Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly invasive candidiasis. Limited VFs' structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.
METHODS: C. tropicalis isolates from sterile specimens were collected over a 12-month period. Conclusive identification was achieved biochemically with the ID 32 C kit. Susceptibility to nine antifungal agents was carried out using the colourimetric broth microdilution kit Sensititre YeastOne YO10. Biofilm-producing capability was evaluated by quantifying biomass formation spectrophotometrically following staining with crystal violet.
RESULTS: Twenty-four non-repetitive isolates of C. tropicalis were collected. The resistance rates to the triazole agents were 29.2% for fluconazole, 16.7% for itraconazole, 20.8% for voriconazole and 8.3% for posaconazole-the pan-azole resistance rate was identical to that of posaconazole. No resistance was recorded for amphotericin B, flucysosine or any of the echinocandins tested. A total of 16/24 (66.7%) isolates were categorized as high biomass producers and 8/24 (33.3%) were moderate biomass producers. None of our isolates were low biomass producers.
CONCLUSION: The C. tropicalis isolates from our centre were resistant only to triazole agents, with the highest resistance rate being recorded for fluconazole and the lowest for posaconazole. While this is not by itself alarming, the fact that our isolates were prolific biofilm producers means that even azole-susceptible isolates can be paradoxically refractory to antifungal therapy.