A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor's materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents.
Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for accurate modeling of mechanical canopy excitation (here coined the 4-dimensional plant) and some associated biological and applied implications of such techniques. We hypothesize that biomechanical plant properties are a specific adaptation to achieve wind-induced photosynthetic enhancement and we outline how traits facilitating canopy excitation could be used as a route for improving crop yield.
BACKGROUND: Smoking cessation clinics have been established in Malaysia since 2004, but wide variations in success rates have been observed. This study aimed to evaluate the proposed pharmacist-led Integrated Quit Smoking Service (IQSS) in Sabah, Malaysia, and identify factors associated with successful smoking cessation.
METHODS: Data from 176 participants were collected from one of the quit-smoking centres in Sabah, Malaysia. Pharmacists, doctors and nurses were involved throughout the study. Any health care provider can refer patients for smoking cessation, and free pharmacotherapy and counselling was provided during the cessation period for up to 3 months. Information on demographic characteristics, smoking behaviours, follow-up and pharmacotherapy were collected. The main outcome measure was the abstinence from smoking, which was verified through carbon monoxide in expired air during the 6-month follow-up.
RESULTS: A 42.6% success rate was achieved in IQSS. Smoking behaviour such as lower cigarette intake and lower Fagerström score were identified as factors associated with success. On top of that, a longer duration of follow-up and more frequent visits were significantly associated with success in quitting smoking.
CONCLUSION: Collaboration among health care practitioners should be the main focus, and we need a combination of proven effective modalities in order to create an ideal smoking cessation module.
Study site: Klinik Kesihatan Luyang, Kota Kinabalu, Sabah, Malaysia
MeSH terms: Adult; Ambulatory Care Facilities; Health Personnel; Humans; Malaysia; Pharmacists; Cohort Studies; Smoking Cessation*
Metabolic syndrome (MetS) consists of several medical conditions that collectively predict the risk for cardiovascular disease better than the sum of individual conditions. The risk of developing MetS in human depends on synergy of both genetic and environmental factors. Being a multifactorial condition with alarming rate of prevalence nowadays, establishment of appropriate experimental animal models mimicking the disease state in humans is crucial in order to solve the difficulties in evaluating the pathophysiology of MetS in human. This review aims to summarize the underlying mechanisms involved in the pathophysiology of dietary, genetic, and pharmacological models of MetS. Furthermore, we will discuss the usefulness, suitability, pros and cons of these animal models. Even though numerous animal models of MetS have been established, further investigations on the invention of new animal model and clarification of plausible mechanisms are still necessary to confer a better understanding to researchers on the selection of animal models for their studies.
A 50-year-old male was prescribed with hydroxychloroquine (HCQ) after osteoarthritis was diagnosed. He had an old nail infection of Aspergillus niger. A remarkable improvement of the symptoms of fungal nail infection was seen after about four weeks of treatment with HCQ. It was very hard to detect the symptoms in the end of the second month of the treatment, both in the finger and toe nails. The symptoms were clearly recurred after HCQ was discontinued.
The data presented in this article were the basis for the study reported in the research articles entitled "Evaluation of a two-sided windcatcher integrated with wing wall (as a new design) and comparison with a conventional windcatcher" (P. Nejat, J.K. Calautit, M.Z.A. Majid, B.R. Hughes, I. Zeynali, F. Jomehzadeh, 2016) [1] which presents the effect of wing wall on the air flow distribution under using the windcatchers as a natural ventilation equipment. Here, we detail the wind tunnel testing and numerical set-up used for obtaining the data on ventilation rates and indoor airflow distribution inside a test room with a two-sided windcatcher and wing wall. Three models were integrated with wing wall angled at 30°, 45° and 60° and another windcatcher was a conventional two-sided device. The computer-aided design (CAD) three-dimensional geometries which were produced using Solid Edge modeler are also included in the data article.
Cancer and pathogenic microbial diseases have terribly affected human health over a longer period of time. In response to the increasing casualties due to cancer and microbial diseases, unique poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were prepared via in-situ oxidative chemical polymerization in this work. The poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were well characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. DNA binding studies by UV-Visible and fluorescence spectroscopic investigations indicated strong binding affinities of poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite; leading to structural damage of DNA. Poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed stronger interactions with DNA as compared to poly(3-methylthiophene) and from dye displacement assay it was confirmed that mode of binding of both the formulations was intercalative. The antimicrobial screening revealed that polymer and its composite displayed stronger antibacterial effects than ampicillin against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhimurium. Besides, the poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed dose dependent effects towards estrogen receptor positive breast cancer (MCF-7) and estrogen receptor negative breast cancer (MDA-MB-231) cell lines; with poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showing better activities against both cell lines. In all in-vitro biological investigations, poly(3-methylthiophene)-titanium(IV)phosphate composite showed superior properties to that of the pure poly(3-methylthiophene), which encouraged us to suggest its potential as future therapeutic gear in drug delivery and other allied fields.
Polyhydroxyalkanoate (PHA) is a microbial polymer that has been at the forefront of many attempts at tissue engineering. However, the surface of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) is hydrophobic with few recognition sites for cell attachment. Various concentrations of fish-scale collagen peptides (FSCPs) were incorporated into P(3HB-co-4HB) copolymer by aminolysis. Later, FSCPs were introduced onto the aminolyzed P(3HB-co-4HB) scaffolds. Introduction of the FSCP groups was verified using Fourier transform infrared spectroscopy and the ninhydrin method. The effect of the incorporation of FSCPs on hydrophilicity was investigated using the water contact angle. As the concentration of FSCPs increased, the water contact angle decreased. In vitro study demonstrated that P(3HB-co-4HB)/FSCP scaffolds provided better cell attachment and growth of L929 mouse fibroblast cells and better cell proliferation. In vivo study showed that P(3HB-co-4HB)/1.5 wt% FSCPs had a significant effect on wound contractions, with the highest percentage of wound closure (61%) in 7 d.
Probiotics may be used to enhance the functionality and nutritional values of fermented sausages. This study aims to evaluate the physicochemical and sensory properties of beef sausages fermented by lactic acid bacteria of Lactobacillus plantarum IIA-2C12 and L. acidophilus IIA-2B4. These strains were isolated from beef cattle and have shown to display probiotic features. While the nutrient contents were not affected by the probiotics, the pH, texture, and color varied among the sausages. Further analysis on fatty acids showed different profiles of saturated (C14:0, C17:0, and C20:0) and unsaturated (C14:1, C18:1n9c, C18:2n6c, and C22:6n3) fatty acids in sausages with probiotics. Gas chromatography-mass spectrometry further revealed some flavor development compounds including acid, alcohols, aldehydes, aromatic, ketones, sulfur, hydrocarbons and terpenes, varied among the sausages. Hedonic test showed no difference in the preference toward aroma, texture, and color for untrained panelists.
Quality Function Deployment (QFD) is a structured methodology that uses customer and technical
requirements for designers and manufacturers to provide better products. Many researchers combine or
integrate the technique of QFD with other methodologies such as Theory Inventive of Problem Solving
(TRIZ) or Design for Manufacture and Assembly (DFMA) to optimise product design innovation and
improvement. The combined methodologies are even used to solve process problems. Initial literature
review of the application of stand-alone QFD poised several problems. Combining QFD with other
techniques, such as TRIZ and DFMA, has helped to address these issues and forms the basis of future
research. The integrated methods can solve main contradictory problems more precisely from product
demand analysis to product design, production and application. Review work of the literature, specifically
that on research and development of QFD, TRIZ and DFMA, showed that the said methodologies have
been widely and successfully implemented in several practical applications such as resolving conflicts
between customer and technical/engineering requirements and reducing production cost. This review work
provides an in-depth analysis of identifying and finding issues of strengths, weaknesses and outcomes
of the QFD when combined with TRIZ and also of QFD integrated with DFMA.
MeSH terms: Problem Solving; Publications; Research; Research Personnel
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disease characterised by the formation of multiple renal cysts that adversely affect renal function. ADPKD shows significant progression with age when complications due to hypertension are most significant. The activation of the renin-angiotensin-aldosterone system (RAAS) occurs in progressive kidney disease leading to hypertension. The RAAS system may also contribute to ADPKD progression by stimulating signalling pathways in the renal cyst cells to promote growth and deregulate epithelial transport. This mini review focuses on the contribution of the RAAS system to renal cyst enlargement and the potential for antagonists of the RAAS system to suppress cyst enlargement as well as control ADPKD-associated hypertension.
There is no unique or 'ideal' running pattern that is the most economical for all runners. Classifying the global running patterns of individuals into two categories (aerial and terrestrial) using the Volodalen® method could permit a better understanding of the relationship between running economy (RE) and biomechanics. The main purpose was to compare RE between aerial and terrestrial runners.
The translation of stacking techniques used in capillary electrophoresis (CE) to microchip CE (MCE) in order to improve concentration sensitivity is an important area of study. The success in stacking relies on the generation and control of the stacking boundaries which is a challenge in MCE because the manipulation of solutions is not as straightforward as in CE with a single channel. Here, a simple and rapid on-line sample concentration (stacking strategy) in a battery operated nonaqueous MCE device with a commercially available double T-junction glass chip is presented. A multi-stacking approach was developed in order to circumvent the issues for stacking in nonaqueous MCE. The cationic analytes from the two loading channels were injected under field-enhanced conditions and were focused by micelle-to-solvent stacking. This was achieved by the application of high electric fields along the two loading channels and a low electric field in the separation channel, with one ground electrode in the reservoir closest to the junction. At the junction, the stacked zones were re-stacked under field-enhanced conditions and then injected into the separation channels. The multi-stacking was verified under a fluorescence microscope using Rhodamine 6G as the analyte, revealing a sensitivity enhancement factor (SEF) of 110. The stacking approach was also implemented in the nonaqueous MCE with contactless conductivity detection of the anticancer drug tamoxifen as well as its metabolites. The multi-stacking and analysis time was 40 s and 110 s, respectively, the limit of detections was from 10 to 35 ng/mL, and the SEFs were 20 to 50. The method was able to quantify the target analytes from breast cancer patients.
BACKGROUND: Hospital Information Systems (HIS) can improve healthcare outcome quality, increase efficiency, and reduce errors. The government of Malaysia implemented HIS across the country to maximize the use of technology to improve healthcare delivery, however, little is known about the benefits and challenges of HIS adoption in each institution. This paper looks at the technology and people issues in adopting such systems.
METHODS: The study used a case study approach, using an in-depth interview with multidisciplinary medical team members who were using the system on a daily basis. A thematic analysis using Atlas.ti was employed to understand the complex relations among themes and sub-themes to discover the patterns in the data. .
RESULTS: Users found the new system increased the efficiency of workflows and saved time. They reported less redundancy of work and improved communication among medical team members. Data retrieval and storage were also mentioned as positive results of the new HIS system. Healthcare workers showed positive attitudes during training and throughout the learning process.
CONCLUSIONS: From a technological perspective, it was found that medical workers using HIS has better access and data management compared to the previously used manual system. The human issues analysis reveals positive attitudes toward using HIS among the users especially from the physicians' side.
MeSH terms: Attitude of Health Personnel*; Health Services Research*; Hospital Information Systems*; Humans; Malaysia; Tertiary Care Centers; Health Information Exchange*
BACKGROUND: Atrial fibrillation (AF) can cause the formation of blood clots in the heart. The clots may move to the brain and cause a stroke. Therefore, this study analyzed the ECG features of AF and normal sinus rhythm signals for AF recognition which were extracted by using a second-order dynamic system (SODS) concept.
OBJECTIVE: To find the appropriate windowing length for feature extraction based on SODS and to determine a machine learning method that could provide higher accuracy in recognizing AF.
METHOD: ECG features were extracted based on a dynamic system (DS) that uses a second-order differential equation to describe the short-term behavior of ECG signals according to the natural frequency (ω), damping coefficient, (ξ), and forcing input (u). The extracted features were windowed into 2, 3, 4, 6, 8, and 10 second episodes to find the appropriate windowing size for AF signal processing. ANOVA and t-tests were used to determine the significant features. In addition, pattern recognition machine learning methods (an artificial neural network (ANN) and a support vector machine (SVM)) with k-fold cross validation (k-CV) were used to develop the ECG recognition system.
RESULTS: Significant differences (p
Parkinson's disease (PD) is a member of a larger group of neuromotor diseases marked by the progressive death of dopamineproducing cells in the brain. Providing computational tools for Parkinson disease using a set of data that contains medical information is very desirable for alleviating the symptoms that can help the amount of people who want to discover the risk of disease at an early stage. This paper proposes a new hybrid intelligent system for the prediction of PD progression using noise removal, clustering and prediction methods. Principal Component Analysis (PCA) and Expectation Maximization (EM) are respectively employed to address the multi-collinearity problems in the experimental datasets and clustering the data. We then apply Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Regression (SVR) for prediction of PD progression. Experimental results on public Parkinson's datasets show that the proposed method remarkably improves the accuracy of prediction of PD progression. The hybrid intelligent system can assist medical practitioners in the healthcare practice for early detection of Parkinson disease.
BACKGROUND: Pain is the most troubling issue to patients with osteoarthritis (OA), yet current pharmacological treatments offer only small-to-moderate pain reduction. Current guidelines therefore emphasise the need to identify predictors of treatment response. In line with these recommendations, an individual patient data (IPD) meta-analysis will be conducted. The study aims to investigate the relative treatment effects of topical non-steroidal anti-inflammatory drugs (NSAIDs) and topical capsaicin in OA and to identify patient-level predictors of treatment response.
METHODS: IPD will be collected from randomised controlled trials (RCTs) of topical NSAIDs and capsaicin in OA. Multilevel regression modelling will be conducted to determine predictors for the specific and the overall treatment effect.
DISCUSSION: Through the identification of treatment responders, this IPD meta-analysis may improve the current understanding of the pain mechanisms in OA and guide clinical decision-making. Identifying and prescribing the treatment most likely to be beneficial for an individual with OA will improve the efficiency of patient management.
SYSTEMATIC REVIEW REGISTRATION:
CRD42016035254.
KEYWORDS: Capsaicin; Individual patient data meta-analysis; NSAIDs; Osteoarthritis; Topical
The purpose of this study was to develop realistic phantom models of the intracellular environment of metastatic breast tumour and naïve brain, and using these models determine an analysis metric for quantification of CEST MRI data that is sensitive to only labile proton exchange rate and concentration. The ability of the optimal metric to quantify pH differences in the phantoms was also evaluated. Novel phantom models were produced, by adding perchloric acid extracts of either metastatic mouse breast carcinoma cells or healthy mouse brain to bovine serum albumin. The phantom model was validated using 1 H NMR spectroscopy, then utilized to determine the sensitivity of CEST MRI to changes in pH, labile proton concentration, T1 time and T2 time; six different CEST MRI analysis metrics (MTRasym , APT*, MTRRex , AREX and CESTR* with and without T1 /T2 compensation) were compared. The new phantom models were highly representative of the in vivo intracellular environment of both tumour and brain tissue. Of the analysis methods compared, CESTR* with T1 and T2 time compensation was optimally specific to changes in the CEST effect (i.e. minimal contamination from T1 or T2 variation). In phantoms with identical protein concentrations, pH differences between phantoms could be quantified with a mean accuracy of 0.6 pH units. We propose that CESTR* with T1 and T2 time compensation is the optimal analysis method for these phantoms. Analysis of CEST MRI data with T1 /T2 time compensated CESTR* is reproducible between phantoms, and its application in vivo may resolve the intracellular alkalosis associated with breast cancer brain metastases without the need for exogenous contrast agents.
MeSH terms: Algorithms*; Animals; Equipment Design; Hydrogen-Ion Concentration*; Image Enhancement/methods*; Image Interpretation, Computer-Assisted/methods; Magnetic Resonance Imaging/instrumentation*; Magnetic Resonance Imaging/methods; Neoplasms, Experimental/pathology; Neoplasms, Experimental/chemistry*; Sensitivity and Specificity; Signal Processing, Computer-Assisted*; Reproducibility of Results; Phantoms, Imaging; Mice; Molecular Imaging/instrumentation*; Molecular Imaging/methods; Proton Magnetic Resonance Spectroscopy/methods
Herbal materials should be stored at optimal conditions in order to retain their nutritional quality. Proper storage has a significant impact on the quality of the herbs and spices.