METHODS: We recruited 112 patients who were newly diagnosed with ACS and treated at the referral hospital, Sarawak General Hospital, Malaysia. In the intervention group (modified CRP), all medication was reviewed by the clinical pharmacists, focusing on drug indication; understanding of secondary prevention therapy and adherence to treatment strategy. We compared the "pre-post" quality of life (QoL) of three groups (intervention, conventional and control) at baseline, 6 months and 12 months post-discharge with Malaysian norms. QoL data was obtained using a validated version of Short-Form 36 Questionnaire (SF-36). Analysis of variance (ANOVA) with repeated measure tests was used to compare the mean differences of scores over time.
RESULTS: A pre-post quasi-experimental non-equivalent group comparison design was applied to 112 patients who were followed up for one year. At baseline, the physical and mental health summaries reported poor outcomes in all three groups. However, these improved gradually but significantly over time. After the 6-month follow-up, the physical component summary reported in the modified CRP (MCRP) participants was higher, with a mean difference of 8.02 (p = 0.015) but worse in the mental component summary, with a mean difference of -4.13. At the 12-month follow-up, the MCRP participants performed better in their physical component (PCS) than those in the CCRP and control groups, with a mean difference of 11.46 (p = 0.008), 10.96 (p = 0.002) and 6.41 (p = 0.006) respectively. Comparing the changes over time for minimal important differences (MICD), the MCRP group showed better social functioning than the CCRP and control groups with mean differences of 20.53 (p = 0.03), 14.47 and 8.8, respectively. In role emotional subscales all three groups showed significant improvement in MCID with mean differences of 30.96 (p = 0.048), 31.58 (p = 0.022) and 37.04 (p
METHODS: Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs.
RESULTS: The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL.
CONCLUSIONS: The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.
RESULTS: Our models learned several syntactic, lexical, and n-gram linguistic biomarkers to distinguish the probable AD group from the healthy group. In contrast to the healthy group, we found that the probable AD patients had significantly less usage of syntactic components and significantly higher usage of lexical components in their language. Also, we observed a significant difference in the use of n-grams as the healthy group were able to identify and make sense of more objects in their n-grams than the probable AD group. As such, our best diagnostic model significantly distinguished the probable AD group from the healthy elderly group with a better Area Under the Receiving Operating Characteristics Curve (AUC) using the Support Vector Machines (SVM).
CONCLUSIONS: Experimental and statistical evaluations suggest that using ML algorithms for learning linguistic biomarkers from the verbal utterances of elderly individuals could help the clinical diagnosis of probable AD. We emphasise that the best ML model for predicting the disease group combines significant syntactic, lexical and top n-gram features. However, there is a need to train the diagnostic models on larger datasets, which could lead to a better AUC and clinical diagnosis of probable AD.
RESULTS: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes.
CONCLUSION: Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level.
METHODS: A systematic search was conducted through Pubmed, CINAHL, EMBASE and Cochrane Central Register of Controlled Trials. Additional articles were located through cross-checking of the references list and bibliography citations of the included studies and previous review papers. We included intervention studies with controlled or baseline comparison groups that were conducted in primary care practices or the community, targeted at adult populations (randomized controlled trials, non-randomized trials with controlled groups and pre- and post-intervention studies). The interventions were targeted either at individuals, communities, health care professionals or the health-care system. The main outcome of interest was the relative risk (RR) of screening uptake rates due to the intervention.
RESULTS: We included 21 studies in the meta-analysis. The risk of bias for randomization was low to medium in the randomized controlled trials, except for one, and high in the non-randomized trials. Two analyses were performed; optimistic (using the highest effect sizes) and pessimistic (using the lowest effect sizes). Overall, interventions were shown to increase the uptake of screening for CVD risk factors (RR 1.443; 95% CI 1.264 to 1.648 for pessimistic analysis and RR 1.680; 95% CI 1.420 to 1.988 for optimistic analysis). Effective interventions that increased screening participation included: use of physician reminders (RR ranged between 1.392; 95% CI 1.192 to 1.625, and 1.471; 95% CI 1.304 to 1.660), use of dedicated personnel (RR ranged between 1.510; 95% CI 1.014 to 2.247, and 2.536; 95% CI 1.297 to 4.960) and provision of financial incentives for screening (RR 1.462; 95% CI 1.068 to 2.000). Meta-regression analysis showed that the effect of CVD risk factors screening uptake was not associated with study design, types of population nor types of interventions.
CONCLUSIONS: Interventions using physician reminders, using dedicated personnel to deliver screening, and provision of financial incentives were found to be effective in increasing CVD risk factors screening uptake.
Objective: To estimate the association between SBP of at least 110 to 115 mm Hg and SBP of 140 mm Hg or higher and the burden of different causes of death and disability by age and sex for 195 countries and territories, 1990-2015.
Design: A comparative risk assessment of health loss related to SBP. Estimated distribution of SBP was based on 844 studies from 154 countries (published 1980-2015) of 8.69 million participants. Spatiotemporal Gaussian process regression was used to generate estimates of mean SBP and adjusted variance for each age, sex, country, and year. Diseases with sufficient evidence for a causal relationship with high SBP (eg, ischemic heart disease, ischemic stroke, and hemorrhagic stroke) were included in the primary analysis.
Main Outcomes and Measures: Mean SBP level, cause-specific deaths, and health burden related to SBP (≥110-115 mm Hg and also ≥140 mm Hg) by age, sex, country, and year.
Results: Between 1990-2015, the rate of SBP of at least 110 to 115 mm Hg increased from 73 119 (95% uncertainty interval [UI], 67 949-78 241) to 81 373 (95% UI, 76 814-85 770) per 100 000, and SBP of 140 mm Hg or higher increased from 17 307 (95% UI, 17 117-17 492) to 20 526 (95% UI, 20 283-20 746) per 100 000. The estimated annual death rate per 100 000 associated with SBP of at least 110 to 115 mm Hg increased from 135.6 (95% UI, 122.4-148.1) to 145.2 (95% UI 130.3-159.9) and the rate for SBP of 140 mm Hg or higher increased from 97.9 (95% UI, 87.5-108.1) to 106.3 (95% UI, 94.6-118.1). For loss of DALYs associated with systolic blood pressure of 140 mm Hg or higher, the loss increased from 95.9 million (95% uncertainty interval [UI], 87.0-104.9 million) to 143.0 million (95% UI, 130.2-157.0 million) [corrected], and for SBP of 140 mm Hg or higher, the loss increased from 5.2 million (95% UI, 4.6-5.7 million) to 7.8 million (95% UI, 7.0-8.7 million). The largest numbers of SBP-related deaths were caused by ischemic heart disease (4.9 million [95% UI, 4.0-5.7 million]; 54.5%), hemorrhagic stroke (2.0 million [95% UI, 1.6-2.3 million]; 58.3%), and ischemic stroke (1.5 million [95% UI, 1.2-1.8 million]; 50.0%). In 2015, China, India, Russia, Indonesia, and the United States accounted for more than half of the global DALYs related to SBP of at least 110 to 115 mm Hg.
Conclusions and Relevance: In international surveys, although there is uncertainty in some estimates, the rate of elevated SBP (≥110-115 and ≥140 mm Hg) increased substantially between 1990 and 2015, and DALYs and deaths associated with elevated SBP also increased. Projections based on this sample suggest that in 2015, an estimated 3.5 billion adults had SBP of at least 110 to 115 mm Hg and 874 million adults had SBP of 140 mm Hg or higher.