Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Abubakar MB, Usman D, El-Saber Batiha G, Cruz-Martins N, Malami I, Ibrahim KG, et al.
    Front Pharmacol, 2021;12:629935.
    PMID: 34012391 DOI: 10.3389/fphar.2021.629935
    The 2019 coronavirus disease (COVID-19) is a potentially fatal multisystemic infection caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Currently, viable therapeutic options that are cost effective, safe and readily available are desired, but lacking. Nevertheless, the pandemic is noticeably of lesser burden in African and Asian regions, where the use of traditional herbs predominates, with such relationship warranting a closer look at ethnomedicine. From a molecular viewpoint, the interaction of SARS-CoV-2 with angiotensin converting enzyme 2 (ACE2) is the crucial first phase of COVID-19 pathogenesis. Here, we review plants with medicinal properties which may be implicated in mitigation of viral invasion either via direct or indirect modulation of ACE2 activity to ameliorate COVID-19. Selected ethnomedicinal plants containing bioactive compounds which may prevent and mitigate the fusion and entry of the SARS-CoV-2 by modulating ACE2-associated up and downstream events are highlighted. Through further experimentation, these plants could be supported for ethnobotanical use and the phytomedicinal ligands could be potentially developed into single or combined preventive therapeutics for COVID-19. This will benefit researchers actively looking for solutions from plant bioresources and help lessen the burden of COVID-19 across the globe.
  2. Etti IC, Abdullah R, Kadir A, Hashim NM, Yeap SK, Imam MU, et al.
    PLoS One, 2017;12(8):e0182357.
    PMID: 28771532 DOI: 10.1371/journal.pone.0182357
    Nature has provided us with a wide spectrum of disease healing phytochemicals like Artonin E, obtained from the root bark of Artocarpus elasticus. This molecule had been predicted to be drug-like, possessing unique medicinal properties. Despite strides made in chemotherapy, prognosis of the heterogenous aggressive triple negative breast cancer is still poor. This study was conducted to investigate the mechanism of inhibition of Artonin E, a prenylated flavonoid on MDA-MB 231 triple negative breast cancer cell, with a view of mitigating the hallmarks displayed by these tumors. The anti-proliferative effect, mode of cell death and the mechanism of apoptosis induction were investigated. Artonin E, was seen to effectively relinquish MDA-MB 231 breast cancer cells of their apoptosis evading capacity, causing a half-maximal growth inhibition at low concentrations (14.3, 13.9 and 9.8 μM) after the tested time points (24, 48 and 72 hours), respectively. The mode of cell death was observed to be apoptosis with defined characteristics. Artonin E was seen to induce the activation of both extrinsic and intrinsic caspases initiators of apoptosis. It also enhanced the release of total reactive oxygen species which polarized the mitochondrial membrane, compounding the release of cytochrome c. Gene expression studies revealed the upregulation of TNF-related apoptosis inducing ligand and proapoptotic genes with down regulation of anti-apoptotic genes and proteins. A G2/M cell cycle arrest was also observed and was attributed to the observed upregulation of p21 independent of the p53 status. Interestingly, livin, a new member of the inhibitors of apoptosis was confirmed to be significantly repressed. In all, Artonin E showed the potential as a promising candidate to combat the aggressive triple negative breast cancer.
  3. Yida Z, Imam MU, Ismail M, Ismail N, Azmi NH, Wong W, et al.
    Biomed Res Int, 2015;2015:602313.
    PMID: 26688813 DOI: 10.1155/2015/602313
    N-Acetylneuraminic acid (Neu5Ac) is a biomarker of cardiometabolic diseases. In the present study, we tested the hypothesis that dietary Neu5Ac may improve cardiometabolic indices. A high fat diet (HFD) + Neu5Ac (50 or 400 mg/kg BW/day) was fed to rats and compared with HFD + simvastatin (10 mg/kg BW/day) or HFD alone for 12 weeks. Weights and serum biochemicals (lipid profile, oral glucose tolerance test, leptin, adiponectin, and insulin) were measured, and mRNA levels of insulin signaling genes were determined. The results indicated that low and high doses of sialic acid (SA) improved metabolic indices, although only the oral glucose tolerance test, serum triglycerides, leptin, and adiponectin were significantly better than those in the HFD and HFD + simvastatin groups (P < 0.05). Furthermore, the results showed that only high-dose SA significantly affected the transcription of hepatic and adipose tissue insulin signaling genes. The data suggested that SA prevented HFD-induced insulin resistance in rats after 12 weeks of administration through nontranscriptionally mediated biochemical changes that may have differentially sialylated glycoprotein structures at a low dose. At higher doses, SA induced transcriptional regulation of insulin signaling genes. These effects suggest that low and high doses of SA may produce similar metabolic outcomes in relation to insulin sensitivity through multiple mechanisms. These findings are worth studying further.
  4. Foo JB, Yazan LS, Tor YS, Armania N, Ismail N, Imam MU, et al.
    PMID: 24947113 DOI: 10.1186/1472-6882-14-197
    Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells.
  5. Ibrahim RM, Hamdan NS, Mahmud R, Imam MU, Saini SM, Rashid SN, et al.
    J Transl Med, 2014;12:82.
    PMID: 24685020 DOI: 10.1186/1479-5876-12-82
    The risk of cardiovascular diseases (CVD) is increased tremendously among menopausal women, and there is an increasing demand for alternative therapies for managing factors like dyslipidemia that contribute to CVD development.
  6. Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al.
    PMID: 24524627 DOI: 10.1186/1472-6882-14-55
    Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.
  7. Ismail N, Ismail M, Mazlan M, Latiff LA, Imam MU, Iqbal S, et al.
    Cell Mol Neurobiol, 2013 Nov;33(8):1159-69.
    PMID: 24101432 DOI: 10.1007/s10571-013-9982-z
    Thymoquinone (TQ), a bioactive constituent of Nigella sativa Linn (N. sativa) has demonstrated several neuropharmacological attributes. In the present study, the neuroprotective properties of TQ were investigated by studying its anti-apoptotic potential to diminish β-amyloid peptide 1-40 sequence (Aβ1-40)-induced neuronal cell death in primary cultured cerebellar granule neurons (CGNs). The effects of TQ against Aβ1-40-induced neurotoxicity, morphological damages, DNA condensation, the generation of reactive oxygen species, and caspase-3, -8, and -9 activation were investigated. Pretreatment of CGNs with TQ (0.1 and 1 μM) and subsequent exposure to 10 μM Aβ1-40 protected the CGNs against the neurotoxic effects of the latter. In addition, the CGNs were better preserved with intact cell bodies, extensive neurite networks, a loss of condensed chromatin and less free radical generation than those exposed to Aβ1-40 alone. TQ pretreatment inhibited Aβ1-40-induced apoptosis of CGNs via both extrinsic and intrinsic caspase pathways. Thus, the findings of this study suggest that TQ may prevent neurotoxicity and Aβ1-40-induced apoptosis. TQ is, therefore, worth studying further for its potential to reduce the risks of developing Alzheimer's disease.
  8. Yida Z, Imam MU, Ismail M, Ooi DJ, Sarega N, Azmi NH, et al.
    J Diabetes Res, 2015;2015:760535.
    PMID: 26273674 DOI: 10.1155/2015/760535
    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance.
  9. Chan KW, Ismail M, Mohd Esa N, Mohamed Alitheen NB, Imam MU, Ooi J, et al.
    Oxid Med Cell Longev, 2018;2018:6742571.
    PMID: 29849908 DOI: 10.1155/2018/6742571
    The present study aimed to investigate the antioxidant and anti-inflammatory properties of defatted kenaf seed meal (DKSM) and its phenolic-saponin-rich extract (PSRE) in hypercholesterolemic rats. Hypercholesterolemia was induced using atherogenic diet feeding, and dietary interventions were conducted by incorporating DKSM (15% and 30%) or PSRE (at 2.3% and 4.6%, resp., equivalent to the total content of DKSM-phenolics and saponins in the DKSM groups) into the atherogenic diets. After ten weeks of intervention, serum total antioxidant capacities of hypercholesterolemic rats were significantly enhanced by DKSM and PSRE supplementation (p < 0.05). Similarly, DKSM and PSRE supplementation upregulated the hepatic mRNA expression of antioxidant genes (Nrf2, Sod1, Sod2, Gsr, and Gpx1) of hypercholesterolemic rats (p < 0.05), except for Gpx1 in the DKSM groups. The levels of circulating oxidized LDL and proinflammatory biomarkers were also markedly suppressed by DKSM and PSRE supplementation (p < 0.05). In aggregate, DKSM and PSRE attenuated the hypercholesterolemia-associated oxidative stress and systemic inflammation in rats, potentially by enhancement of hepatic endogenous antioxidant defense via activation of the Nrf2-ARE pathway, which may be contributed by the rich content of phenolics and saponins in DKSM and PSRE. Hence, DKSM and PSRE are prospective functional food ingredients for the potential mitigation of atherogenic risks in hypercholesterolemic individuals.
  10. Foo SC, Yusoff FM, Imam MU, Foo JB, Ismail N, Azmi NH, et al.
    Biotechnol Rep (Amst), 2019 Mar;21:e00296.
    PMID: 30581767 DOI: 10.1016/j.btre.2018.e00296
    In this study, anti-proliferative effects of C. calcitrans extract and its fucoxanthin rich fraction (FxRF) were assessed on human liver HepG2 cancer cell line. Efficacy from each extract was determined by cytotoxicity assay, morphological observation, and cell cycle analysis. Mechanisms of action observed were evaluated using multiplex gene expression analysis. Results showed that CME and FxRF induced cytotoxicity to HepG2 cells in a dose and time-dependent manner. FxRF (IC50: 18.89 μg.mL-1) was found to be significantly more potent than CME (IC50: 87.5 μg.mL-1) (p 
  11. Ismail M, Alsalahi A, Khaza'ai H, Imam MU, Ooi J, Samsudin MN, et al.
    PMID: 32731336 DOI: 10.3390/ijerph17155410
    BACKGROUND: Cerebrovascular diseases (CBVDs) and diabetes mellitus (DM) are interrelated and cumbersome global health burdens. However, the relationship between edible oils consumption and mortality burdens of CBVDs and DM has not yet been evaluated. This review aims to explore correlations between per capita mortality burdens of CBVDs and DM, as well as food consumption of palm or soya oils in 11 randomly selected countries in 2005, 2010, and 2016.

    METHODS: After obtaining data on food consumption of palm and soya oils and mortality burdens of CBVDs and DM, correlations between the consumption of oils and mortality burdens of diseases were explored.

    RESULTS: There was a positive correlation between the consumption of soya oil with the mortality burden of CBVDs in Australia, Switzerland, and Indonesia, as well as the mortality burden of DM in the USA. The consumption of palm oil had a positive correlation with the mortality burden of DM in Jordan only.

    CONCLUSIONS: Food consumption of soya oil in several countries possibly contributes to the mortality burden of CBVDs or DM more than food consumption of palm oil, which could be a possible risk factor in the mortality burdens of CBVDs and DM.

  12. Waziri PM, Abdullah R, Yeap SK, Omar AR, Abdul AB, Kassim NK, et al.
    J Ethnopharmacol, 2016 Dec 24;194:549-558.
    PMID: 27729282 DOI: 10.1016/j.jep.2016.10.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Clausena excavata Burm.f. is used locally in folk medicine for the treatment of cancer in South East Asia.

    AIM OF THE STUDY: To determine the mechanism of action of pure clausenidin crystals in the induction of hepatocellular carcinoma (hepG2) cells apoptosis.

    MATERIALS AND METHODS: Pure clausenidin was isolated from Clausena excavata Burm.f. and characterized using (1)H and (13)C NMR spectra. Clausenidin-induced cytotoxicity was determined by MTT assay. The morphology of hepG2 after treatment with clausenidin was determined by fluorescence and Scanning Electron Microscopy. The effect of clausenidin on the apoptotic genes and proteins were determined by real-time qPCR and protein array profiling, respectively. The involvement of the mitochondria in clausenidin-induced apoptosis was investigated using MMP, caspase 3 and 9 assays.

    RESULTS: Clausenidin induced significant (p<0.05) and dose-dependent apoptosis of hepG2 cells. Cell cycle assay showed that clausenidin induced a G2/M phase arrest, caused mitochondrial membrane depolarization and significantly (p<0.05) increased expression of caspases 3 and 9, which suggest the involvement of the mitochondria in the apoptotic signals. In addition, clausenidin caused decreased expression of the anti-apoptotic protein, Bcl 2 and increased expression of the pro-apoptotic protein, Bax. This finding was confirmed by the downregulation of Bcl-2 gene and upregulation of the Bax gene in the treated hepG2 cells.

    CONCLUSION: Clausenidin extracted from Clausena excavata Burm.f. is an anti-hepG2 cell compound as shown by its ability to induce apoptosis through the mitochondrial pathway of apoptosis. Clausenidin can potentially be developed into an anticancer compound.

  13. Isa T, Zakaria ZA, Rukayadi Y, Mohd Hezmee MN, Jaji AZ, Imam MU, et al.
    Int J Mol Sci, 2016;17(5).
    PMID: 27213349 DOI: 10.3390/ijms17050713
    The use of nanoparticle delivery systems to enhance intracellular penetration of antibiotics and their retention time is becoming popular. The challenge, however, is that the interaction of nanoparticles with biological systems at the cellular level must be established prior to biomedical applications. Ciprofloxacin-cockle shells-derived calcium carbonate (aragonite) nanoparticles (C-CSCCAN) were developed and characterized. Antibacterial activity was determined using a modified disc diffusion protocol on Salmonella Typhimurium (S. Typhimurium). Biocompatibilittes with macrophage were evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Bromo-2'-deoxyuridine (BrdU) assays. Transcriptional regulation of interleukin 1 beta (IL-1β) was determined using reverse transcriptase-polymerase chain reaction (RT-PCR). C-CSCCAN were spherical in shape, with particle sizes ranging from 11.93 to 22.12 nm. Encapsulation efficiency (EE) and loading content (LC) were 99.5% and 5.9%, respectively, with negative ζ potential. X-ray diffraction patterns revealed strong crystallizations and purity in the formulations. The mean diameter of inhibition zone was 18.6 ± 0.5 mm, which was better than ciprofloxacin alone (11.7 ± 0.9 mm). Study of biocompatability established the cytocompatability of the delivery system without upregulation of IL-1β. The results indicated that ciprofloxacin-nanoparticles enhanced the antibacterial efficacy of the antibiotic, and could act as a suitable delivery system against intracellular infections.
  14. Yida Z, Imam MU, Ismail M, Wong W, Abdullah MA, Ideris A, et al.
    Food Nutr Res, 2015;59:29046.
    PMID: 26642300 DOI: 10.3402/fnr.v59.29046
    N-Acetylneuraminic acid (Neu5Ac), a type of sialic acid, has close links with cholesterol metabolism and is often used as a biomarker in evaluating the risk of cardiovascular diseases. However, most studies on the health implications of Neu5Ac have focused on its effects on the nervous system, while its effects on cardiovascular risk factors have largely been unreported. Thus, the effects of Neu5Ac on coagulation status in high fat diet (HFD)-induced hyperlipidemic rats were evaluated in this study.
  15. Ismail N, Ismail M, Imam MU, Azmi NH, Fathy SF, Foo JB, et al.
    PMID: 25475556 DOI: 10.1186/1472-6882-14-467
    Apoptosis is often the end result of oxidative damage to neurons. Due to shared pathways between oxidative stress, apoptosis and antioxidant defence systems, an oxidative insult could end up causing cellular apoptosis or survival depending on the severity of the insult and cellular responses. Plant bioresources have received close attention in recent years for their potential role in regulating the pathways involved in apoptosis and oxidative stress in favour of cell survival. Rice bran is a bioactive-rich by-product of rice milling process. It possesses antioxidant properties, making it a promising source of antioxidants that could potentially prevent oxidative stress-induced neurodegenerative diseases.
  16. Imam MU, Ismail M, Ooi DJ, Azmi NH, Sarega N, Chan KW, et al.
    Crit Rev Biotechnol, 2016 Aug;36(4):585-93.
    PMID: 25641328 DOI: 10.3109/07388551.2014.995586
    Plant bioresources are relied upon as natural, inexpensive, and sustainable remedies for the management of several chronic diseases worldwide. Plants have historically been consumed for medicinal purposes based on traditional belief, but this trend is currently changing. The growing interest in the medicinal properties of plant bioresources stems from concerns of side effects and other adverse effects caused by synthetic drugs. This interest has yielded a better understanding of the roles of plant bioactive compounds in health promotion and disease prevention, including the underlying mechanisms involved in such functional effects. The desire to maximize the potential of phytochemicals has led to the development of "rich fractions," in which extracts contain bioactive compounds in addition to elevated levels of the primary compound. Although a rich fraction effectively increases the bioactivity of the extract, the standardization and quality assurance process can be challenging. However, the supercritical fluid extraction (SFE) system is a promising green technology in this regard. Future clinical and pharmacological studies are needed to fully elucidate the implications of these preparations in the management of human diseases, thereby fostering a move toward evidence-based medicine.
  17. Muhammad SI, Maznah I, Mahmud RB, Saeed MI, Imam MU, Ishaka A
    Drug Des Devel Ther, 2013;7:1409-20.
    PMID: 24324328 DOI: 10.2147/DDDT.S50861
    The expression of genes regulated by estrogen in the uterus was studied in ovariectomized (OVX) rats treated with germinated brown rice (GBR) bioactives, and compared to Remifemin or estrogen at different doses to identify the regulation of these genes in the uterus and their molecular mechanisms.
  18. Ismail N, Ismail M, Fathy SF, Musa SN, Imam MU, Foo JB, et al.
    Int J Mol Sci, 2012;13(8):9692-708.
    PMID: 22949825 DOI: 10.3390/ijms13089692
    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H(2)O(2)) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H(2)O(2)-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.
  19. Yida Z, Imam MU, Ismail M, Ismail N, Ideris A, Abdullah MA
    J Biomed Sci, 2015;22:96.
    PMID: 26498218 DOI: 10.1186/s12929-015-0211-6
    Serum sialic acid levels are positively correlated with coronary artery disease and inflammation. Although sialic acid is a non-specific marker, it is considered sensitive likely due to its influence in sialylation of glycoprotein structures all over the body.
  20. Hou Z, Imam MU, Ismail M, Ooi DJ, Ideris A, Mahmud R
    Drug Des Devel Ther, 2015;9:4115-25.
    PMID: 26316695 DOI: 10.2147/DDDT.S80743
    Estrogen deficiency alters quality of life during menopause. Hormone replacement therapy has been used to improve quality of life and prevent complications, but side effects limit its use. In this study, we evaluated the use of edible bird's nest (EBN) for prevention of cardiometabolic problems in rats with ovariectomy-induced menopause. Ovariectomized female rats were fed for 12 weeks with normal rat chow, EBN, or estrogen and compared with normal non-ovariectomized rats. Metabolic indices (insulin, estrogen, superoxide dismutase, malondialdehyde, oral glucose tolerance test, and lipid profile) were measured at the end of the experiment from serum and liver tissue homogenate, and transcriptional levels of hepatic insulin signaling genes were measured. The results showed that ovariectomy worsened metabolic indices and disrupted the normal transcriptional pattern of hepatic insulin signaling genes. EBN improved the metabolic indices and also produced transcriptional changes in hepatic insulin signaling genes that tended toward enhanced insulin sensitivity, and glucose and lipid homeostasis, even better than estrogen. The data suggest that EBN could meliorate estrogen deficiency-associated increase in risk of cardiometabolic disease in rats, and may in fact be useful as a functional food for the prevention of such a problem in humans. The clinical validity of these findings is worth studying further.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links