METHODS: We conducted a cross-sectional study consisting of 1551 participants from the National Heart, Lung and Blood Institute Family Heart Study to assess the relation of Apo E polymorphism with the prevalence of MetS. MetS was defined according to the American Heart Association-National Heart, Lung and Blood Institute-International Diabetes Federation-World Health Organization harmonized criteria. We used generalized estimating equations to estimate adjusted odds ratios (ORs) for prevalent MetS and the Bonferroni correction to account for multiple testing in the secondary analysis.
RESULTS: Our study population had a mean age (standard deviation) of 56.5 (11.0) years, and 49.7% had MetS. There was no association between the Apo E genotypes and the MetS. The multivariable adjusted ORs (95% confidence interval) were 1.00 (reference), 1.26 (0.31-5.21), 0.89 (0.62-1.29), 1.13 (0.61-2.10), 1.13 (0.88-1.47) and 1.87 (0.91-3.85) for the Ɛ3/Ɛ3, Ɛ2/Ɛ2, Ɛ2/Ɛ3, Ɛ2/Ɛ4, Ɛ3/Ɛ4 and Ɛ4/Ɛ4 genotypes, respectively. In a secondary analysis, Ɛ2/Ɛ3 genotype was associated with 41% lower prevalence odds of low high-density lipoprotein [multivariable adjusted ORs (95% confidence interval) = 0.59 (0.36-0.95)] compared with Ɛ3/Ɛ3 genotype.
CONCLUSIONS: Our findings do not support an association between Apo E polymorphism and MetS in a multicentre population-based study of predominantly White US men and women.
METHODS: Subjects were divided into two age groups-32 ± 2 (young) and 52 ± 2 (old) years old. Four subjects from each group were assigned with TRF (78% tocotrienol and 22% tocopherol, 150 mg/day) or placebo capsules for 6 months. Fasting plasma were obtained at 0, 3, and 6 months. Plasma tocopherol and tocotrienol levels were determined. Plasma proteome was resolved by 2DE, and differentially expressed proteins identified by MS. The expressions of three proteins were validated by Western blotting.
RESULTS: Six months of TRF supplementation significantly increased plasma levels of tocopherols and tocotrienols. Proteins identified as being differentially expressed were related to cholesterol homeostasis, acute-phase response, protease inhibitor, and immune response. The expressions of Apolipoprotein A-I precursor, Apolipoprotein E precursor, and C-reactive protein precursor were validated. The old groups showed more proteins changing in expression.
CONCLUSIONS: TRF appears to not only affect plasma levels of tocopherols and tocotrienols, but also the levels of plasma proteins. The identity of these proteins may provide insights into how TRF exerts its beneficial effects. They may also be potentially developed into biomarkers for the study of the effects and effectiveness of TRF supplementation.
METHODS: This study included 1740 males (1146 Chinese, 327 Malays and 267 Asian Indians) and 1950 females (1329 Chinese, 360 Malays and 261 Asian Indians) with complete data on anthropometric indices, fasting lipids, smoking status, alcohol consumption, exercise frequency and genotype at the APOE locus.
RESULTS: Malays and Asian Indians were more obese compared with the Chinese. Smoking was uncommon in all females but Malay males had significantly higher prevalence of smokers. Malays had the highest LDL-C whilst Indians had the lowest HDL-C, The epsilon 3 allele was the most frequent allele in all three ethnic groups. Malays had the highest frequency of epsilon 4 (0.180 and 0.152) compared with Chinese (0.085 and 0.087) and Indians (0.108 and 0.075) in males and females, respectively. The epsilon 2 allele was the least common in Asian Indians. Total cholesterol (TC) and LDL-C was highest in epsilon 4 carriers and lowest in epsilon 2 carriers. The reverse was seen in HDL-C with the highest levels seen in epsilon 2 subjects. The association between ethnic group and HDL-C differed according to APOE genotype and gender. Asian Indians had the lowest HDL-C for each APOE genotype except in Asian Indian males with epsilon 2, where HDL-C concentrations were intermediate between Chinese and Malays.
CONCLUSION: Ethnic differences in lipid profile could be explained in part by the higher prevalence of epsilon 4 in the Malays. Ethnicity may influence the association between APOE genotypes and HDL-C. APOE genotype showed no correlation with HDL-C in Malay males whereas the association in Asian Indians was particularly marked. Further studies of interactions between genes and environmental factors will contribute to the understanding of differences of coronary risk amongst ethnic groups.