Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Salihu A, Abbas O, Sallau AB, Alam MZ
    3 Biotech, 2015 Dec;5(6):1101-1106.
    PMID: 28324400 DOI: 10.1007/s13205-015-0294-5
    Different agricultural residues were considered in this study for their ability to support cellulolytic enzyme production by Aspergillus niger. A total of eleven agricultural residues including finger millet hulls, sorghum hulls, soybean hulls, groundnut husk, banana peels, corn stalk, cassava peels, sugarcane bagasse, saw dust, rice straw and sheanut cake were subjected to three pretreatment (acid, alkali and oxidative) methods. All the residues supported the growth and production of cellulases by A. niger after 96 h of incubation. Maximum cellulase production was found in alkali-treated soybean hulls with CMCase, FPase and β-glucosidase yields of 9.91 ± 0.04, 6.20 ± 0.13 and 5.69 ± 0.29 U/g, respectively. Further studies in assessing the potential of soybean hulls are being considered to optimize the medium composition and process parameters for enhanced cellulase production.
    Matched MeSH terms: Aspergillus niger
  2. Daruliza KM, Lam KL, Yang KL, Priscilla JT, Sunderasan E, Ong MT
    Eur Rev Med Pharmacol Sci, 2011 Sep;15(9):1027-33.
    PMID: 22013725
    Hevea brasiliensis extract could potentially be employed as a relatively low cost resource for various anti-fungal activities due to the simplicity of latex preparation and the abundance of latex that can be obtained in rubber producing regions. The present study was aimed at examining the species specific anti-fungal property of H. brasilensis latex C-serum against Aspergillus niger.
    Matched MeSH terms: Aspergillus niger/drug effects*; Aspergillus niger/growth & development
  3. Puvan Arul Arumugam, Irfan Mohamad, Rosdan Salim, Zeehaida Mohamed
    MyJurnal
    Azadirachta indica (neem) has been used for a long time in agricultural and alternative medicine. Neem
    had been proved effective against certain fungi that could infect human body. This pilot study aims to
    demonstrate the antifungal effect of Malaysian neem leaf extracts on the pathogenic fungi in otomycosis,
    Aspergillus niger and Candida albicans. This is a laboratory-controlled prospective study conducted at
    Universiti Sains Malaysia. The powder form of Malaysian neem leaf was prepared. Ethanol and aqueous
    extracts of the neem leaf was diluted with sterile water to establish five different concentrations of 50 g/
    ml, 25 g/ml, 12.5 g/ml, 6.25 g/ml and 3.125g/ml. The extract was tested on Sabouraud Dextrose Agar
    suspended with Candida albicans and Aspergillus niger respectively. Well diffusion method was used
    and zone of inhibition was measured. Growth of the fungi was inhibited in both alcohol and aqueous
    extract concentrations. The minimum inhibitory concentration (MIC) of Malaysian neem aqueous extract
    against Candida albicans was 11.91 g/ml, neem ethanol extract against Candida albicans was 5.16 g/
    ml, neem aqueous extract against Aspergillus niger was 7.73 g/ml and neem ethanol extract against
    Aspergillus niger was 9.25 g/ml. Statistical analysis showed that the antifungal activity of Candida
    albicans is better in alcohol neem than aqueous extract (p
    Matched MeSH terms: Aspergillus niger
  4. Nieland S, Barig S, Salzmann J, Gehrau F, Zamani AI, Richter A, et al.
    Microb Biotechnol, 2021 Jul;14(4):1422-1432.
    PMID: 33421319 DOI: 10.1111/1751-7915.13739
    To set a benchmark in fungal growth rate, a differential analysis of prototrophic Aspergillus fumigatus AR04 with three ascomycetes applied in > 103 t year-1 scale was performed, i.e. Ashbya gosspyii (riboflavin), Aspergillus niger (citric acid) and Aspergillus oryzae (food-processing). While radial colony growth decreased 0.5-fold when A. gossypii was cultivated at 40°C instead of 28°C, A. fumigatus AR04 responded with 1.7-fold faster hyphal growth. A. niger and A. oryzae formed colonies at 40°C, but not at 43°C. Moreover, all A. fumigatus strains tested grew even at 49°C. In chemostat experiments, A. fumigatus AR04 reached steady state at a dilution rate of 0.7 h-1 at 40°C, 120% more than reported for A. gossypii at 28°C. To study mycelial growth rates under unlimited conditions, carbon dioxide increase rates were calculated from concentrations detected online in the exhaust of batch fermentations for 3 h only. All rates calculated suggest that A. fumigatus AR04 approximates Arrhenius' rule when comparing short cultivations at 30°C with those at 40°C. Linearization of the exponential phase and comparison of the slopes revealed an increase to 192% by the 10°C up-shift.
    Matched MeSH terms: Aspergillus niger*
  5. Rahman RA, Molla AH, Fakhru'l-Razi A
    Environ Sci Pollut Res Int, 2014 Jan;21(2):1178-87.
    PMID: 23881591 DOI: 10.1007/s11356-013-1974-5
    Sustainable, environmental friendly, and safe disposal of sewage treatment plant (STP) sludge is a global expectation. Bioremediation performance was examined at different hydraulic retention times (HRT) in 3-10 days and organic loading rates (OLR) at 0.66-7.81 g chemical oxygen demand (COD) per liter per day, with mixed filamentous fungal (Aspergillus niger and Penicillium corylophilum) inoculation by liquid-state bioconversion (LSB) technique as a continuous process in large-scale bioreactor. Encouraging results were monitored in treated sludge by LSB continuous process. The highest removal of total suspended solid (TSS), turbidity, and COD were achieved at 98, 99, and 93%, respectively, at 10 days HRT compared to control. The minimum volatile suspended solid/suspended solid implies the quality of water, which was recorded 0.59 at 10 days and 0.72 at 3 days of HRT. In treated supernatant with 88% protein removal at 10 days of HRT indicates a higher magnitude of purification of treated sludge. The specific resistance to filtration (SRF) quantifies the performance of dewaterability; it was recorded minimum 0.049 × 10(12) m kg(-1) at 10 days of HRT, which was equivalent to 97% decrease of SRF. The lower OLR and higher HRT directly influenced the bioremediation and dewaterability of STP sludge in LSB process. The obtained findings imply encouraging message in continuing treatment of STP sludge, i.e., bioremediation of wastewater for environmental friendly disposal in near future.
    Matched MeSH terms: Aspergillus niger/physiology
  6. Abdel-Wahhab MA, El-Nekeety AA, Hathout AS, Salman AS, Abdel-Aziem SH, Sabry BA, et al.
    Toxicon, 2020 Jul 15;181:57-68.
    PMID: 32353570 DOI: 10.1016/j.toxicon.2020.04.103
    This study aimed to identify the bioactive compounds of the ethyl acetate extract of Aspergillus niger SH2-EGY using GC-MS and to evaluate their protective role against aflatoxin B1 (AFB1)-induced oxidative stress, genotoxicity and cytotoxicity in rats. Six groups of male Sprague-Dawley rats were treated orally for 4 weeks included the control group, AFB1-treated group (80 μg/kg b.w); fungal extract (FE)-treated groups at low (140) or high dose (280) mg/kg b.w and the groups treated with AFB1 plus FE at the two tested doses. The GC-MS analysis identified 26 compounds. The major compounds found were 1,2,3,4,6-Penta-trimethylsilyl Glucopyranose, Fmoc-L-3-(2-Naphthyl)-alanine, D-(-)-Fructopyranose, pentakis (trimethylsilyl) ether, bis (2-ethylhexyl) phthalate, trimethylsilyl ether-glucitol, and octadecanamide, N-(2- methylpropyl)-N-nitroso. The in vivo results showed that AFB1 significantly increased serum ALT, AST, creatinine, uric acid, urea, cholesterol, triglycerides, LDL, carcinoembryonic antigen, alpha-fetoprotein, interleukin-6, Malondialdehyde, nitric oxide, Bax, caspase-3 and P53 mRNA expression, chromosomal aberrations and DNA fragmentation. It decreased serum TP, albumin, HDL, Bcl-2 mRNA expression, hepatic and renal TAC, SOD and GPx content and induced histological changes in the liver and kidney. FE prevented these disturbances in a dosage-dependent manner. It could be concluded that A. niger SH2-EGY extract is safe a promising agent for pharmaceutical and food industries.
    Matched MeSH terms: Aspergillus niger*
  7. Alam MZ, Fakhru'l-Razi A, Idris A, Abd-Aziz S
    PMID: 12227649
    The bioconversion of domestic wastewater sludge by immobilized mixed culture of filamentous fungi was investigated in a laboratory. The potential mixed culture of Penicillium corylophilum WWZA1003 and Aspergillus niger SCahmA103 was isolated from its local habitats (wastewater and sludge cake) and optimized on the basis of biodegradability and dewaterability of treated sludge. The observed results in this study showed that the sludge treatment was highly influenced by the effect of immobilized mixed fungi using liquid state bioconversion (LSB) process. The maximum production of dry filter cake (DFC) was enriched with fungal biomass to about 20.05 g/kg containing 23.47 g/kg of soluble protein after 4 days of fungal treatment. The reduction of COD, TSS, turbidity (optical density against distilled water, 660 nm), reducing sugar and protein in supernatant and filtration rate of treated sludge were influenced by the fungal mixed culture as compared to control (uninnoculated). After these processes, 99.4% of TSS, 98.05% of turbidity, 76.2% of soluble protein, 98% of reducing sugar and 92.4% of COD in supernatant of treated sludge were removed. Filtration time was decreased tremendously by the microbial treatment after 2 days of incubation. The effect of fungal strain on pH was also studied and presented. Effective bioconversion was observed after 4 days of fungal treatment.
    Matched MeSH terms: Aspergillus niger/growth & development*; Aspergillus niger/metabolism
  8. Tang PL, Hassan O
    BMC Chem, 2020 Dec;14(1):7.
    PMID: 32043090 DOI: 10.1186/s13065-020-0663-y
    This study was conducted to evaluate the potential of pineapple peel (PP) and pineapple crown leaves (PCL) as the substrate for vanillic acid and vanillin production. About 202 ± 18 mg L-1 and 120 ± 11 mg L-1 of ferulic acid was produced from the PP and PCL respectively. By applied response surface methodology, the ferulic acid yield was increased to 1055 ± 160 mg L-1 by treating 19.3% of PP for 76 min, and 328 ± 23 mg L-1 by treating 9.9% of PCL for 36 min in aqueous sodium hydroxide solution at 120 °C. The results revealed that PP extract was better than PCL extract for vanillic acid and vanillin production. Furthermore, the experiment also proved that large volume feeding was more efficient than small volume feeding for high vanillic acid and vanillin yield. Through large volume feeding, about 7 ± 2 mg L-1 of vanillic acid and 5 ± 1 mg L-1 of vanillin was successfully produced from PP extract via Aspergillus niger fermentation.
    Matched MeSH terms: Aspergillus niger
  9. Lim SH, Ibrahim D
    Pak J Biol Sci, 2013 Sep 15;16(18):920-6.
    PMID: 24502148
    The aim of this study was to develop an economical bioprocess to produce the fermentable sugars at laboratory scales Using Oil Palm Frond (OPF) as substrate in Solid State Fermentation (SSF). OPF waste generated by oil palm plantations is a major problem in terms of waste management. However, this lignocellulosic waste material is a cheap source of cellulose. We used OPF as substrate to produce fermentable sugars. The high content of cellulose in OPF promises the high fermentable sugars production in SSF. Saccharification of OPF waste by A. niger USMAI1 generates fermentable sugars and was evaluated through a solid state fermentation. Physical parameters, e.g., inoculum size, initial substrate moisture, initial pH, incubation temperature and the size of substrate were optimized to obtain the maximum fermentable sugars from oil palm fronds. Up to 77 mg of fermentable sugars per gram substrate was produced under the optimal physical parameter conditions. Lower productivity of fermentable sugars, 32 mg fermentable sugars per gram substrate was obtained under non optimized conditions. The results indicated that about 140.6% increase in fermentable sugar production after optimization of the physical parameters. Glucose was the major end component amongst the fermentable sugars obtained. This study indicated that under optimum physical parameter conditions, the OPF waste can be utilized to produce fermentable sugars which then convert into other products such as alcohol.
    Matched MeSH terms: Aspergillus niger/growth & development; Aspergillus niger/metabolism*
  10. Chengzheng W, Jiazhi W, Shuangjiang C, Swamy MK, Sinniah UR, Akhtar MS, et al.
    J Nanosci Nanotechnol, 2018 May 01;18(5):3673-3681.
    PMID: 29442882 DOI: 10.1166/jnn.2018.15364
    Nanobiotechnology has emerged as a promising technology to develop new therapeutically active nanomaterials. The present study was aimed to biosynthesize AgNPs extracellularly using Aspergillus niger JX556221 fungal extract and to evaluate their anticancer potential against colon cancer cell line, HT-29. UV-visible spectral characterization of the synthesized AgNPs showed higher absorption peak at 440 nm wavelength. Transmission Electron Microscopy (TEM) analysis revealed the monodispersed nature of synthesized AgNPs occurring in spherical shape with a size in the range of 20-25 nm. Further, characterization using Energy Dispersive Spectroscopy (EDX) confirmed the face-centred cubic crystalline structure of metallic AgNPs. FTIR data revealed the occurrence of various phytochemicals in the cell free fungal extract which substantiated the fungal extract mediated AgNPs synthesis. The cytotoxic effect of AgNPs was studied by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results evidenced the cytotoxic effect of AgNPs on HT-29 cell lines in a dose dependent manner. The highest activity was found at 100 μg/ml concentration after 24 h of incubation. Use of propidium iodide staining examination method confirmed the cytotoxic effect of AgNPs through inducing cell apoptosis. AgNPs cytotoxicity was found to be through elevating reactive oxygen species (ROS), and caspase-3 activation resulting in induced apoptosis. Therefore, this research finding provides an insight towards the development of novel anticancer agents using biological sources.
    Matched MeSH terms: Aspergillus niger
  11. El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M
    BMC Biotechnol, 2018 11 09;18(1):71.
    PMID: 30413198 DOI: 10.1186/s12896-018-0481-7
    BACKGROUND: Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

    RESULTS: The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

    CONCLUSIONS: Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.

    Matched MeSH terms: Aspergillus niger/genetics; Aspergillus niger/growth & development; Aspergillus niger/metabolism*
  12. Alam MZ, Fakhru'l-Razi A, Molla AH
    Water Res, 2003 Sep;37(15):3569-78.
    PMID: 12867323
    The biosolids accumulation and biodegradation of domestic wastewater treatment plant (DWTP) sludge by filamentous fungi have been investigated in a batch fermenter. The filamentous fungi Aspergillus niger and Penicillium corylophilum isolated from wastewater and DWTP sludge was used to evaluate the treatment performance. The optimized mixed inoculum (A. niger and P. corylophilum) and developed process conditions (co-substrate and its concentration, temperature, initial pH, inoculum size, and aeration and agitation rate) were incorporated to accelerate the DWTP sludge treatment process. The results showed that microbial treatment of higher strength of DWTP sludge (4% w/w of TSS) was highly influenced by the liquid state bioconversion (LSB) process. In developed bioconversion processes, 93.8 g/kg of biosolids was enriched with fungal biomass protein of 30 g/kg. Enrichment of nutrients such as nitrogen (N), phosphorous (P), potassium (K) in biosolids was recorded in 6.2% (w/w), 3.1% (w/w) and 0.15% (w/w) from its initial values of 4.8% (w/w), 2.0% (w/w) and 0.08% (w/w) respectively after 10 days of fungal treatment. The biodegradation results revealed that 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of COD in treated DWTP sludge supernatant were removed after 8 days of microbial treatment. The specific resistance to filtration (SRF) in treated sludge (1.4x10(12) m/kg) was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation compared to untreated sample (85x10(12) m/kg).
    Matched MeSH terms: Aspergillus niger/enzymology*
  13. Rabeea Munawar, Ehsan Ullah Mughal, Muhammad Waseem Mumtaz, Muhammad Zubair, Jamshaid Ashraf, Zofishan Yousaf, et al.
    Sains Malaysiana, 2018;47:27-34.
    The prime objective of the present research work was to evaluate the efficiency of bio-machine for the removal of Cadmium (Cd) from aquatic systems. Aspergillus niger fungus was used as bio-machine to remove Cd from aquatic systems. Twenty three different strains (IIB-1 to IIB-23) were isolated from industrial effluents and the Langmuir and Freundlich models were applied to the best Cadmium removal strain IIB-23 in order to obtain the adsorption parameters. Different parameters such as pH, temperature, contact time, initial metal concentratio, and biomass dosage on the biosorption of Cd were studied. The percent removal of Cd initially increased with an increase in pH ranging from 5.5-6.5 and then decreased by increasing pH from 7.0-7.5. An optimized pH used for Cd removal from aquatic systems was found to be 6.5. Additionally, an optimum amount of biomass was 1.33 g for the maximum removal of Cd from the aqueous solutions with initial metal concentration of 75 mg/L. The results obtained thus indicated that Langmuir model is the best suited for the removal of Cd from aquatic systems.
    Matched MeSH terms: Aspergillus niger
  14. Woon JS, Mackeen MM, Illias RM, Mahadi NM, Broughton WJ, Murad AMA, et al.
    PeerJ, 2017;5:e3909.
    PMID: 29038760 DOI: 10.7717/peerj.3909
    BACKGROUND: Aspergillus niger, along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., β-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH) are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger.

    METHODS: In this study, the gene encoding a cellobiohydrolase B (cbhB) from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic(®) CTec2) and was used to hydrolyse oil palm empty fruit bunch (OPEFB), one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR) to screen for any compositional changes upon enzymatic treatment.

    RESULTS: Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N-glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-β-D-cellobioside (MUC), p-nitrophenyl-cellobioside (pNPC) and p-nitrophenyl-cellobiotrioside (pNPG3) but was not active towards crystalline substrates like Avicel(®) and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum catalysis occurred at 50 °C and pH 4 but the enzyme was stable between pH 3 to 10 and 30 to 80 °C. Although CBHB on its own was unable to digest crystalline substrates, supplementation of CBHB (0.37%) with Cellic(®) CTec2 (30%) increased saccharification of OPEFB by 27%. Compositional analyses of the treated OPEFB samples revealed that CBHB supplementation reduced peak intensities of both crystalline cellulose Iα and Iβ in the treated OPEFB samples.

    DISCUSSION: Since CBHB alone was inactive against crystalline cellulose, these data suggested that it might work synergistically with other components of Cellic(®) CTec2. CBHB supplements were desirable as they further increased hydrolysis of OPEFB when the performance of Cellic(®) CTec2 was theoretically capped at an enzyme loading of 34% in this study. Hence, A. niger CBHB was identified as a potential supplementary enzyme for the enzymatic hydrolysis of OPEFB.

    Matched MeSH terms: Aspergillus niger
  15. Tai WY, Tan JS, Lim V, Lee CK
    Biotechnol Prog, 2019 05;35(3):e2781.
    PMID: 30701709 DOI: 10.1002/btpr.2781
    The high cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass. The goal of this study was to optimize cellulases and xylanase production by a local indigenous fungus strain (Aspergillus niger DWA8) using agricultural waste (oil palm frond [OPF]) as substrate. The enzyme production profile before optimization indicated that the highest carboxymethyl cellulose (CMCase), filter paper (FPase), and xylanase activities of 1.06 U/g, 2.55 U/g, and 2.93 U/g were obtained on day 5, day 4, and day 5 of fermentation, respectively. Response surface methodology was used to study the effects of several key process parameters in order to optimize cellulase production. Of the five physical and two chemical factors tested, only moisture content of 75% (w/w) and substrate amount of 2.5 g had statistically significant effect on enzymes production. Under optimized conditions of 2.5 g of substrate, 75% (w/w) moisture content, initial medium of pH 4.5, 1 × 106 spores/mL of inoculum, and incubation at ambient temperature (±30°C) without additional carbon and nitrogen, the highest CMCase, FPase, and xylanase activities obtained were 2.38 U/g, 2.47 U/g, and 5.23 U/g, respectively. Thus, the optimization process increased CMCase and xylanase production by 124.5 and 78.5%, respectively. Moreover, A. niger DWA8 produced reasonably good cellulase and xylanase titers using OPF as the substrate when compared with previous researcher finding. The enzymes produced by this process could be further use to hydrolyze biomass to generate reducing sugars, which are the feedstock for bioethanol production.
    Matched MeSH terms: Aspergillus niger/enzymology*; Aspergillus niger/genetics; Aspergillus niger/growth & development; Aspergillus niger/metabolism
  16. Santiago C, Fitchett C, Munro MH, Jalil J, Santhanam J
    PMID: 22454674 DOI: 10.1155/2012/689310
    An endophytic fungus isolated from the plant Cinnamomum mollissimum was investigated for the bioactivity of its metabolites. The fungus, similar to a Phoma sp., was cultured in potato dextrose broth for two weeks, followed by extraction with ethyl acetate. The crude extract obtained was fractionated by high-performance liquid chromatography. Both crude extract and fractions were assayed for cytotoxicity against P388 murine leukemic cells and inhibition of bacterial and fungal pathogens. The bioactive extract fraction was purified further and characterized by nuclear magnetic resonance, mass spectral and X-ray crystallography analysis. A polyketide compound, 5-hydroxyramulosin, was identified as the constituent of the bioactive fungal extract fraction. This compound inhibited the fungal pathogen Aspergillus niger (IC(50) 1.56 μg/mL) and was cytotoxic against murine leukemia cells (IC(50) 2.10 μg/mL). 5-Hydroxyramulosin was the major compound produced by the endophytic fungus. This research suggests that fungal endophytes are a good source of bioactive metabolites which have potential applications in medicine.
    Matched MeSH terms: Aspergillus niger
  17. Tahlan S, Ramasamy K, Lim SM, Shah SAA, Mani V, Narasimhan B
    Chem Cent J, 2018 Dec 19;12(1):139.
    PMID: 30569392 DOI: 10.1186/s13065-018-0513-3
    BACKGROUND: The emergence of bacterial resistance is a major public health problem. It is essential to develop and synthesize new therapeutic agents with better activity. The mode of actions of certain newly developed antimicrobial agents, however, exhibited very limited effect in treating life threatening systemic infections. Therefore, the advancement of multi-potent and efficient antimicrobial agents is crucial to overcome the increased multi-drug resistance of bacteria and fungi. Cancer, which remains as one of the primary causes of deaths and is commonly treated by chemotherapeutic agents, is also in need of novel and efficacious agents to treat resistant cases. As such, a sequence of novel substituted benzamides was designed, synthesized and evaluated for their antimicrobial and anticancer activities.

    METHODOLOGY: All synthesized compounds were characterized by IR, NMR, Mass and elemental analysis followed by in vitro antimicrobial studies against Gram-positive (Staphylococcus aureus), Gram-negative (Salmonella typhi and Klebsiella pneumoniae) bacterial and fungal (Candida albicans and Aspergillus niger) strains by the tube dilution method. The in vitro anticancer evaluation was carried out against the human colorectal carcinoma cell line (HCT116), using the Sulforhodamine B assay.

    RESULTS, DISCUSSION AND CONCLUSION: Compound W6 (MICsa, st, kp = 5.19 µM) emerged as a significant antibacterial agent against all tested bacterial strains i.e. Gram-positive (S. aureus), Gram-negative (S. typhi, K. pneumoniae) while compound W1 (MICca, an = 5.08 µM) was most potent against fungal strains (A. niger and C. albicans) and comparable to fluconazole (MIC = 8.16 µM). The anticancer screening demonstrated that compound W17 (IC50 = 4.12 µM) was most potent amongst the synthesized  compounds and also more potent than the standard drug 5-FU (IC50 = 7.69 µM).

    Matched MeSH terms: Aspergillus niger
  18. Ang LF, Por LY, Yam MF
    PLoS One, 2015;10(3):e0111859.
    PMID: 25789757 DOI: 10.1371/journal.pone.0111859
    An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant ([Formula: see text]) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable.
    Matched MeSH terms: Aspergillus niger/enzymology*
  19. Zakaria L, Yee TL, Zakaria M, Salleh B
    Trop Life Sci Res, 2011 May;22(1):71-80.
    PMID: 24575210 MyJurnal
    A total of 82 isolates of microfungi were isolated from 6 sandy soil samples collected from Teluk Aling beach, Pulau Pinang. The soil microfungi were isolated by using direct isolation, debris isolation and soil dilution techniques. Based on morphological characteristics, seven genera of microfungi were identified namely, Fusarium (42%), Aspergillus (24%), Trichoderma (13%), Curvularia (9%), Colletotrichum (6%), Helminthosporium (4%) and Penicillium (2%). The most common species isolated was Fusarium solani followed by Fusarium semitecum, Aspergillus niger, Trichoderma viride, Curvularia clavata, Curvularia lunata, Helminthosporium velutinum, Colletotrichum sp. and Penicillium chrysogenum. From the present study, it appears that the sandy beach contains a microfungi reservoir comprising of a variety of genera which contributes significantly to the ecological functioning of a marine ecosystem.
    Matched MeSH terms: Aspergillus niger
  20. Fakhru'l-Razi A, Alam MZ, Idris A, Abd-Aziz S, Molla AH
    PMID: 12369644
    Bioconversion of higher strength of domestic wastewater biosolids (sludge) (4% w/w of TSS) by mixed fungal culture of Aspergillus niger and Penicillium corylophilum was studied in a laboratory. The effect of potential mixed fungi on domestic wastewater sludge accelerated the liquid state bioconversion (LSB) process. The highest production of dry sludge cake (biosolids) was enriched with fungal biomass to about 85.66 g/kg containing 25.23 g/kg of protein after 8 days of treatment. The results presented in this study revealed that the reduction of chemical oxygen demand (COD), total suspended solid (TSS), and specific resistance to filtration (SRF) of treated sludge were highly influenced by the fungal culture as compared to control (uninnoculated). The maximum removal rates in treated sludge (biosolids) supernatant recorded were 92% of COD and 98.8% of TSS. Lower SRF (1.08 x 10(12) m/kg) was perceived in microbially treated sludge after 6 days of fermentation. The observed parameters were highly influenced after 8 days of treatment. The influence of pH was also studied and presented in the paper.
    Matched MeSH terms: Aspergillus niger/growth & development*; Aspergillus niger/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links