Displaying publications 1 - 20 of 98 in total

Abstract:
Sort:
  1. Chiroma SM, Mohd Moklas MA, Mat Taib CN, Baharuldin MTH, Amon Z
    Biomed Pharmacother, 2018 Jul;103:1602-1608.
    PMID: 29864948 DOI: 10.1016/j.biopha.2018.04.152
    Cognitive impairments and cholinergic dysfunctions have been well reported in old age disorders including Alzheimer's disease (AD). d-galactose (D-gal) has been reported as a senescence agent while aluminium act as a neurotoxic metal, but little is known about their combined effects at different doses. The aim of this study was to establish an animal model with cognitive impairments by comparing the effects of different doses of co-administrated D-gal and aluminium chloride (AlCl3). In this study male albino wistar rats were administered with D-gal 60 mg/kg.bwt intra peritoneally (I.P) injected and AlCl3 (100, 200, or 300 mg/kg.bwt.) was orally administered once daily for 10 consecutive weeks. Performance of the rats were evaluated through behavioural assessments; Morris water maze (MWM) and open field tests (OFT); histopathological examination was performed on the hippocampus; moreover biochemical measurements of acetylcholinesterase (AChE) and hyperphosphorylated tau protein (p-tau) were examined. The results of this experiment on rats treated with D-gal 60 + AlCl3 200 mg/kg.bwt showed near ideal cognitive impairments. The rats exhibited an obvious memory and learning deficits, marked neuronal loss in hippocampus, showed increase in AChE activities and high expression of p-tau within the tissues of the brain. This study concludes that D-gal 60 + AlCl3 200 mg/kg.bwt as the ideal dose for mimicking AD like cognitive impairments in albino wistar rats. It is also crucial to understand the pathogenesis of this neurodegenerative disease and for drug discovery.
    Matched MeSH terms: Chlorides/administration & dosage; Chlorides/toxicity*
  2. Ahmad Saat, Zaini Hamzah
    MyJurnal
    Clay has been regarded as very important natural industrial materials. All these industries exploit the properties that clay can be molded into any shape and fired to dry without losing its form. A study was carried out on clay samples from eight sites in the north-eastern part of Peninsular Malaysia. The study was accomplished by using X-ray diffraction (XRD) technique. The x-ray diffraction spectra obtained enable the determination of the lattice spacing associated with the types of clay and nonclay minerals present in the samples. Results of the study shows that the major components of clay minerals present in all samples studied are kaolinite and illite. The presence of kaolinite is confirmed by firing test in which the kaolinite diffraction peaks disappeared upon heating the samples at 600 o C. The presence of non-clay minerals such as quartz, mica, feldspar and chlorite are also observed.
    Matched MeSH terms: Chlorides
  3. Aldoghachi MA, Azirun MS, Yusoff I, Ashraf MA
    Saudi J Biol Sci, 2016 Sep;23(5):634-41.
    PMID: 27579014 DOI: 10.1016/j.sjbs.2015.08.004
    Experiments on hybrid red tilapia Oreochromis sp. were conducted to assess histopathological effects induced in gill tissues of 96 h exposure to waterborne lead (5.5 mg/L). These tissues were investigated by light and scanning electron microscopy. Results showed that structural design of gill tissues was noticeably disrupted. Major symptoms were changes of epithelial cells, fusion in adjacent secondary lamellae, hypertrophy and hyperplasia of chloride cells and coagulate necrosis in pavement cells with disappearance of its microridges. Electron microscopic X-ray microanalysis of fish gills exposed to sublethal lead revealed that lead accumulated on the surface of the gill lamella. This study confirmed that lead exposure incited a difference of histological impairment in fish, supporting environmental watch over aquatic systems when polluted by lead.
    Matched MeSH terms: Chlorides
  4. Ng S, Yam F, Beh K, Hassan Z
    Sains Malaysiana, 2014;43:947-951.
    Often, fluoride based electrolyte was applied to synthesize highly ordered titanium dioxide nanotubes. However, in the present work, bundled titanium dioxide nanotubes were fabricated in chloride based electrolyte through electrochemical method. Structural and morphological investigations were carried out on the nanotubes synthesized under different anodization parameters. The growth mechanism of such nanotubes was elucidated and illustrated. The estimated diameter of the as-anodized nanotube was less than 150 nm while the length varied from hundreds of nanometer to microns. X-ray diffraction patterns and Raman spectra have showed anatase and rutile phases of titanium dioxide within the thermally treated samples.
    Matched MeSH terms: Chlorides
  5. Ahmadzadeh S, Kassim A, Rezayi M, Rounaghi GH
    Molecules, 2011 Sep 22;16(9):8130-42.
    PMID: 21941227 DOI: 10.3390/molecules16098130
    The complexation reactions between the macrocyclic ionophore, p-isopropylcalix[6]arene and Cs+ cation were studied in dimethylsulfoxide-acetonitrile (DMSO-AN) binary non-aqueous solvents at different temperatures using a conductometry method. The conductance data show that the stoichiometry of the (p-isopropylcalix[6]-arene·Cs)+ complex in all binary mixed solvents is 1:1. The stability of the complexes is affected by the composition of the binary solvent media and a non-linear behavior was observed for changes of log K(f) of the complex versus the composition of the binary mixed solvents. The thermodynamic parameters (DH°(c) and DS°(c)) for formation of (p-isopropyl-calix[6]arene·Cs)+ complex were obtained from temperature dependence of the stability constant and the obtained results show that the (p-isopropylcalix[6]arene·Cs)+ complex is enthalpy destabilized, but entropy stabilized, and the values of the mentioned parameters are affected strongly by the nature and composition of the binary mixed solvents.
    Matched MeSH terms: Chlorides/chemistry*
  6. Aziz HA, Alias S, Assari F, Adlan MN
    Waste Manag Res, 2007 Dec;25(6):556-65.
    PMID: 18229750
    Suspended solids, colour and chemical oxygen demand (COD) are among the main pollutants in landfill leachate. Application of physical or biological processes alone is normally not sufficient to remove these constituents, especially for leachate with a lower biochemical oxygen demand (BOD)/ COD ratio. The main objective of this research was to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD from leachate produced in a semi-aerobic landfill in Penang, Malaysia. A 12-month characterization study of the leachate indicated that it had a mean annual BOD/COD ratio of 0.15 and was partially stabilized, with little further biological degradation likely to occur. Particle size analysis of the raw leachate indicated that its 50th percentile (d50) was 11.68 microm. Three types of coagulants were examined in bench scale jar test studies: aluminium sulphate (alum), ferric chloride (FeCl3) and ferrous sulphate (FeSO4). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing, 50 rpm of slow mixing, and 60 min settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl3 was found to be superior to other coagulants tested. At pH 4 and 12, fair removal of suspended solids was observed at a reasonably low coagulant dose, i.e., 600 mg L(-1); hHowever, about 2500 mg L(-1) of coagulant was required to achieve good removals at pH 6. Better removals were achieved at higher temperature. The d50 of sludge after coagulation at pH 4 with a 2500 mg L(-1) FeCl3 dose was 60.16 microm, which indicated that the particles had been removed effectively from the leachate. The results indicate that coagulation and flocculation processes can be used effectively in integrated semi-aerobic leachate treatment systems, especially for removing suspended solids, colour and COD.
    Matched MeSH terms: Chlorides
  7. Wang Z, Li P, Ma K, Chen Y, Penfold J, Thomas RK, et al.
    J Colloid Interface Sci, 2019 Sep 05;557:124-134.
    PMID: 31518834 DOI: 10.1016/j.jcis.2019.09.016
    The ester sulfonate anionic surfactants are a potentially valuable class of sustainable surfactants. The micellar growth, associated rheological changes, and the onset of precipitation are important consequences of the addition of electrolyte and especially multi-valent electrolytes in anionic surfactants. Small angle neutron scattering, SANS, has been used to investigate the self-assembly and the impact of different valence electrolytes on the self-assembly of a range of ester sulfonate surfactants with subtly different molecular structures. The results show that in the absence of electrolyte small globular micelles form, and in the presence of NaCl, and AlCl3 relatively modest micellar growth occurs before the onset of precipitation. The micellar growth is more pronounced for the longer unbranched and branched alkyl chain lengths. Whereas changing the headgroup geometry from methyl ester to ethyl ester has in general a less profound impact. The study highlights the importance of relative counterion binding strengths and shows how the surfactant structure affects the counterion binding and hence the micelle structure. The results have important consequences for the response of such surfactants to different operational environments.
    Matched MeSH terms: Chlorides
  8. Xu H, Thomas RK, Penfold J, Li PX, Ma K, Welbourne RJL, et al.
    J Colloid Interface Sci, 2018 Feb 15;512:231-238.
    PMID: 29073464 DOI: 10.1016/j.jcis.2017.10.064
    The methyl ester sulfonates represent a promising group of anionic surfactants which have the potential for improved performance and biocompatibility in a range of applications. Their solution properties, in particular their tolerance to hard water, suggests that surface ordering may occur in the presence of multi-valent counterion. Understanding their adsorption properties in a range of different circumstances is key to the exploitation of their potential. Neutron reflectivity and surface tension have been used to characterise the adsorption at the air-aqueous solution interface of the anionic surfactant sodium tetradecanoic 2-sulfo 1-methyl ester, C14MES, in the absence of electrolyte and in the presence of mono, di, and tri-valent counterions, Na+, Ca2+, and Al3+. In particular the emphasis has been on exploring the tendency to form layered structures at the interface. In the absence of electrolyte and in the presence of NaCl and CaCl2 and AlCl3 at low concentrations monolayer adsorption is observed, and the addition of electrolyte results in enhanced adsorption. In the presence of NaCl and CaCl2 only monolayer adsorption is observed. However at higher AlCl3 concentrations surface multilayer formation is observed, in which the number of bilayers at the surface depends upon the surfactant and AlCl3 concentrations.
    Matched MeSH terms: Chlorides
  9. Khalit WNAW, Tay KS
    Ecotoxicol Environ Saf, 2017 Nov;145:214-220.
    PMID: 28738204 DOI: 10.1016/j.ecoenv.2017.07.020
    Unmetabolized pharmaceuticals often enter the water treatment plants and exposed to various treatment processes. Among these water treatment processes, disinfection is a process which involves the application of chemical oxidation to remove pathogen. Untreated pharmaceuticals from primary and secondary treatment have the potential to be exposed to the chemical oxidation process during disinfection. This study investigated the kinetics and mechanism of the degradation of sotalol during chlorination process. Chlorination with hypochlorous acid (HOCl) as main reactive oxidant has been known as one of the most commonly used disinfection methods. The second order rate constant for the reaction between sotalol and free available chlorine (FAC) was found to decrease from 60.1 to 39.1M-1min-1 when the pH was increased from 6 to 8. This result was mainly attributed by the decreased of HOCl concentration with increasing pH. In the real water samples, the presence of the higher amount of organic content was found to reduce the efficiency of chlorination in the removal of sotalol. This result showed that sotalol competes with natural organic matter to react with HOCl during chlorination. After 24h of FAC exposure, sotalol was found to produce three stable transformation by-products. These by-products are mainly chlorinated compounds. According to the acute and chronic toxicity calculated using ECOSAR computer program, the transformation by-products are more harmful than sotalol.
    Matched MeSH terms: Chlorides/chemistry*
  10. Mohd Pisal MH, Osman AF, Jin TS, Rahman RA, Alrashdi AA, Masa A
    Polymers (Basel), 2021 Feb 17;13(4).
    PMID: 33671304 DOI: 10.3390/polym13040600
    Carbonized natural filler can offer the production of low cost composites with an eco-friendliness value. The evolving field of electronics encourages the exploration of more functions and potential for carbonized natural filler, such as by modifying its surface chemistry. In this work, we have performed surface modification on carbonized wood fiber (CWF) prior to it being used as filler in the ethylene vinyl acetate (EVA) composite system. Zinc chloride (ZnCl2) with various contents (2 to 8 wt%) was used to surface modify the CWF and the effects of ZnCl2 composition on the surface morphology and chemistry of the CWF filler were investigated. Furthermore, the absorptive, mechanical, thermal, and electrical properties of the EVA composites containing CWF-ZnCl2 were also analyzed. SEM images indicated changes in the morphology of the CWF while FTIR analysis proved the presence of ZnCl2 functional groups in the CWF. EVA composites incorporating the CWF-ZnCl2 showed superior mechanical, thermal and electrical properties compared to the ones containing the CWF. The optimum content of ZnCl2 was found to be 6 wt%. Surface modification raised the electrical conductivity of the EVA/CWF composite through the development of conductive deposits in the porous structure of the CWF as a channel for ionic and electronic transfer between the CWF and EVA matrix.
    Matched MeSH terms: Chlorides
  11. Aziz HA, Rahmat NS, Alazaiza MYD
    PMID: 35010685 DOI: 10.3390/ijerph19010420
    Chemical-based coagulants and flocculants are commonly used in the coagulation-flocculation process. However, the drawbacks of using these chemical materials have triggered researchers to find natural materials to substitute or reduce the number of chemical-based coagulants and flocculants. This study examines the potential application of Nephelium lappaceum seeds as a natural coagulant-coagulant aid with Tin (IV) chloride (SnCl4) in eliminating suspended solids (SS), colour, and chemical oxygen demand (COD) from landfill leachate. Results showed that the efficiency of Nephelium lappaceum was low when used as the main coagulant in the standard jar test. When SnCl4 was applied as a single coagulant, as much as 98.4% of SS, 96.8% of colour and 82.0% of COD was eliminated at an optimal dose of 10.5 g/L and pH 7. The higher removal efficiency of colour (88.8%) was obtained when 8.40 g/L of SnCl4 was applied with a support of 3 g/L of Nephelium lappaceum. When SnCl4 was utilised as a coagulant, and Nephelium lappaceum seed was used as a flocculant, the removal of pollutants generally improved. Overall, this research showed that Nephelium lappaceum seed is a viable natural alternative for treating landfill leachate as a coagulant aid.
    Matched MeSH terms: Chlorides
  12. Kaur, S., Abdul Jalil, R., Akmar, S.L.
    Ann Dent, 2004;11(1):-.
    MyJurnal
    The objective of this study was to determine the effect of chewing commercially available meswak may have on levels of calcium, chloride, phosphate and thiocyanate in stimulated whole saliva. A total of 20 subjects participated in the investigation. They were distributed into two groups. Those in group A (10 individuals) were asked to first chew on a cotton roll (sized #1) followed by the chewing of an equivalent sized 5mm piece of commercially available meswak. Subjects in group B (10 individuals) did the same but, chewed on cotton roll (sized #2) followed by the chewing of an equivalent sized 10mm piece of commercially available meswak. After following a specified chewing protocol, samples of stimulated whole saliva were collected into a graduated tube at the end of every chewing regime. Calcium, chloride, phosphate and thiocyanate analysis were carried out using colour titration and spectrophotometer. Results from this investigation indicated that commercially available meswak chewing sticks apart from containing high amounts of calcium and chloride may possibly release phosphate and thiocyanate into whole saliva. These findings suggest that the commercially available meswak used as chewing sticks may have the potential of releasing substances into saliva that could influence the state of oral health. Further studies have to be carried out to ascertain the therapeutic benefits of chewing commercially available meswak.
    Matched MeSH terms: Chlorides
  13. Ramli NS, Giribabu N, Muniandy S, Salleh N
    Theriogenology, 2016 Jan 15;85(2):238-46.
    PMID: 26483308 DOI: 10.1016/j.theriogenology.2015.09.036
    Secretions of chloride (Cl(-))- and bicarbonate (HCO3(-))-rich fluid by the seminal vesicles could involve cystic fibrosis transmembrane regulator (CFTR), which activity can be stimulated by cAMP generated from the reaction involving adenylate cyclase (AC). In this study, we investigated levels of CFTR, AC, and cAMP in the seminal vesicles under testosterone influence. Orchidectomized adult male rats received 7-day treatment with 125 or 250 μg/kg/day of testosterone with or without flutamide or finasteride. At the end of the treatment, animals were sacrificed and seminal vesicles were harvested for analyses of CFTR and AC protein expression level by Western blotting. Distribution of CFTR and AC in seminal vesicles was observed by immunohistochemistry. Levels of cAMP and dihydrotestosterone in seminal vesicle homogenates were measured by ELISA. Cystic fibrosis transmembrane regulator, AC, and cAMP levels increased with increasing doses of testosterone (P 
    Matched MeSH terms: Chlorides
  14. Mohd Mokhtar H, Giribabu N, Kassim N, Muniandy S, Salleh N
    J Steroid Biochem Mol Biol, 2014 Oct;144 Pt B:361-72.
    PMID: 25125390 DOI: 10.1016/j.jsbmb.2014.08.007
    Estrogen is known to stimulate uterine fluid and Cl(-) secretion via CFTR. This study investigated testosterone effect on these changes in a rat model.
    Matched MeSH terms: Chlorides/metabolism*
  15. Raza H, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Abbas Q, et al.
    Bioorg Chem, 2020 01;94:103445.
    PMID: 31826809 DOI: 10.1016/j.bioorg.2019.103445
    In the current research work, different N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides have been synthesized according to the protocol described in scheme 1. The synthesis was initiated by reacting various substituted anilines (1a-e) with 4-chlorobutanoyl chloride (2) in aqueous basic medium to give various electrophiles, 4-chloro-N-(substituted-phenyl)butanamides (3a-e). These electrophiles were then coupled with 1-[(E)-3-phenyl-2-propenyl]piperazine (4) in polar aprotic medium to attain the targeted N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides (5a-e). The structures of all derivatives were identified and characterized by proton-nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR) and Infra-Red (IR) spectral data along with CHN analysis. The in vitro inhibitory potential of these butanamides was evaluated against Mushroom tyrosinase, whereby all compounds were found to be biologically active. Among them, 5b exhibited highest inhibitory potential with IC50 value of 0.013 ± 0.001 µM. The same compound 5b was also assayed through in vivo approach, and it was explored that it significantly reduced the pigments in zebrafish. The in silico studies were also in agreement with aforesaid results. Moreover, these molecules were profiled for their cytotoxicity through hemolytic activity, and it was found that except 5e, all other compounds showed minimal toxicity. The compound 5a also exhibited comparable results. Hence, some of these compounds might be worthy candidates for the formulation and development of depigmentation drugs with minimum side effects.
    Matched MeSH terms: Chlorides
  16. Abbasi MA, Ijaz M, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2020 Jul;33(4):1609-1616.
    PMID: 33583794
    In the planned research work, the nucleophilic substitution reaction of 1-[(E)-3-phenyl-2-propenyl]piperazine (1) was carried out with different sulfonyl chlorides (2a-g) at pH 9-10 to synthesize its different N-sulfonated derivatives (3a-g). The structures of the synthesized compounds were characterized by their proton-nuclear magnetic resonance (1H-NMR), carbon-nuclear magnetic resonance (13C-NMR) and Infra Red (IR) spectral data, along with CHN analysis. The inhibition potential of the synthesized molecules was ascertained against two bacterial pathogenic strains i.e. Bacillus subtilis and Escherichia coli. It was inferred from the results that some of the compounds were very suitable inhibitors of these bacterial strains. Moreover, their cytotoxicity was also profiled and it was outcome that most of these molecules possessed moderate cytotoxicity.
    Matched MeSH terms: Chlorides
  17. Mohmad AR, Hamzah AA, Yang J, Wang Y, Bozkurt I, Shin HS, et al.
    Faraday Discuss, 2021 Apr 01;227:332-340.
    PMID: 33523053 DOI: 10.1039/c9fd00132h
    In this work, we report the synthesis and characterization of mixed phase Nb1+xS2 nanoflakes prepared by chemical vapor deposition. The as-grown samples show a high density of flakes (thickness ∼50 nm) that form a continuous film. Raman and X-ray diffraction data show that the samples consist of both 2H and 3R phases, with the 2H phase containing a high concentration of Nb interstitials. These Nb interstitials sit in between the NbS2 layers to form Nb1+xS2. Cross-sectional Energy Dispersive Spectroscopy analysis with transmission electron microscopy suggests that the 2H Nb1+xS2 region is found in thinner flakes, while 3R NbS2 is observed in thicker regions of the films. The evolution of the phase from 2H Nb1+xS2 to 3R NbS2 may be attributed to the change of the growth environment from Nb-rich at the start of the growth to sulfur-rich at the latter stage. It was also found that the incorporation of Nb interstitials is highly dependent on the temperature of the NbCl5 precursor and the position of the substrate in the furnace. Samples grown at high NbCl5 temperature and with substrate located closer to the NbCl5 source show higher incorporation of Nb interstitials. Electrical measurements show linear I-V characteristics, indicating the metallic nature of the Nb1+xS2 film with relatively low resistivity of 4.1 × 10-3Ω cm.
    Matched MeSH terms: Chlorides
  18. Ahmad A, Fazial FF, Khalil HPSA, Fazry S, Lazim A
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124816.
    PMID: 37182623 DOI: 10.1016/j.ijbiomac.2023.124816
    Starch nanocrystals (SNCs) are tiny particles that possess unique qualities due to their small size, such as increased crystallinity, thin sheet structure, low permeability, and strong resistance to digestion. Although sago starch nanocrystals (SNCs) are naturally hydrophilic, their properties can be modified through chemical modifications to make them more versatile for various applications. In this study, the esterification process was used to modify SNCs using lauroyl chloride (LC) to enhance their surface properties. Three different ratios of LC to SNC were tested to determine the impact on the modified SNC (mSNC). The chemical changes in the mSNC were analyzed using FTIR and 1H NMR spectroscopy. ##The results showed that as the amount of LC increased, the degree of substitution (DS) also increased, which reduced the crystallinity of the mSNC and its thermal stability. However, the esterification process also improved the hydrophobicity of the SNC, making it more amphiphilic. The emulsification capabilities of the mSNC were investigated using a Pickering emulsion, and the results showed that the emulsion made from mSNC-1.0 had better stability than the one made from pristine SNC. This study highlights the potential of SNC as a particle emulsifier and demonstrates how esterification can improve its emulsification capabilities.
    Matched MeSH terms: Chlorides
  19. Hossain MI, El-Harbawi M, Alitheen NB, Noaman YA, Lévêque JM, Yin CY
    Ecotoxicol Environ Saf, 2013 Jan;87:65-9.
    PMID: 23107478 DOI: 10.1016/j.ecoenv.2012.09.020
    Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC₅₀ values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to detect microbial growth and activity.
    Matched MeSH terms: Chlorides/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links