Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Nur Ramziahrazanah Jumat, Pei Shin Chai, Chiew Yee Loh, Sharmili Vidyadaran, Zainina Seman
    MyJurnal
    Introduction: Immune response against viral infections and tumors not only requires the recruitment of immune cells but also cytokines. Cytokine dysregulation is associated with inflammatory diseases such as cancer, autoimmune diseases, infections and allergy. Intake of fruit and vegetables are known not only to reduce inflammation but may also provide protection against various diseases. Methods: Effects of selected fruits and herbs on cytokines profile of IL-8, IL-1β, IL-6, IL-10, TNF and IL-12p70 were examined using the CBA flow cytometric assay. Peripheral blood mononuclear cells (PBMC) obtained from blood samples of twelve healthy subjects aged 20 to 30 years [males = 6 and females = 6] were treated with papaya, mata kucing, dang shen and pu-erh tea, respectively, for 6 and 48 hours at various concentrations. In vivo effects was further tested on healthy volunteers [males = 2, females = 4] by 2-days consumption of papaya following 2-days washout period without papaya. The diet of volunteers was controlled with fixed meals. Results:In vitro results after 6 hours of culture showed that papaya-treated PBMC significantly increased IL-8, IL-1β and IL-6 but reduced IL-10. Mata kucing-treated PBMC significantly increased IL-8 but reduced IL-6 while pu-erh tea significantly reduced IL-8, IL-1β, IL-6 and TNF. Cytokine analysis for dang shen-treated PBMC was only conducted at 48 hours. After 48 hours, papaya extract significantly reduced IL-8, IL-6 (8000 μg/ml), IL-10 and TNF. Significant increase of IL-6 was observed at 4000 and 16000 μg/ml. Mata kucing extract significantly increased IL-1β, IL-6 but reduced TNF. Significant increase of TNF was observed at 16000 μg/ml. Dang shen and pu-erh tea reduced IL-8, IL-1β, IL-6, IL-10 and TNF. However, in vivo papaya consumption did not show any significant changes and levels were low. Conclusion: This study showed fruits such as papaya and mata kucing had both stimulatory and inhibitory effect on various pro-inflammatory cytokines while effect of herbs such as dang shen and pu-erh tea were inhibitory. Immunomodulatory studies of natural food such as fruits and herbs may provide better understanding and subsequently improve management of inflammatory diseases.
    Matched MeSH terms: Interleukin-1beta
  2. Jiang H, Bai L, Ji L, Bai Z, Su J, Qin T, et al.
    J Virol, 2020 07 16;94(15).
    PMID: 32461319 DOI: 10.1128/JVI.00294-20
    Japanese encephalitis virus (JEV) infection alters microRNA (miRNA) expression in the central nervous system (CNS). However, the mechanism contributing to miRNA regulation in the CNS is not known. We discovered global degradation of mature miRNA in mouse brains and neuroblastoma (NA) cells after JEV infection. Integrative analysis of miRNAs and mRNAs suggested that several significantly downregulated miRNAs and their targeted mRNAs were clustered into an inflammation pathway. Transfection with miRNA 466d-3p (miR-466d-3p) decreased interleukin-1β (IL-1β) expression and inhibited JEV replication in NA cells. However, miR-466d-3p expression increased after JEV infection in the presence of cycloheximide, indicating that viral protein expression reduced miR-466d-3p expression. We generated all the JEV coding proteins and demonstrated NS3 helicase protein to be a potent miRNA suppressor. The NS3 proteins of Zika virus, West Nile virus, and dengue virus serotype 1 (DENV-1) and DENV-2 also decreased miR-466d-3p expression. Results from helicase-blocking assays and in vitro unwinding assays demonstrated that NS3 could unwind pre-miR-466d and induce miRNA dysfunction. Computational models and an RNA immunoprecipitation assay revealed arginine-rich domains of NS3 to be crucial for pre-miRNA binding and degradation of host miRNAs. Importantly, site-directed mutagenesis of conserved residues in NS3 revealed that R226G and R202W reduced the binding affinity and degradation of pre-miR-466d. These results expand the function of flavivirus helicases beyond unwinding duplex RNA to degrade pre-miRNAs. Hence, we revealed a new mechanism for NS3 in regulating miRNA pathways and promoting neuroinflammation.IMPORTANCE Host miRNAs have been reported to regulate JEV-induced inflammation in the CNS. We found that JEV infection could reduce expression of host miRNA. The helicase region of the NS3 protein bound specifically to miRNA precursors and could lead to incorrect unwinding of miRNA precursors, thereby reducing the expression of mature miRNAs. This observation led to two major findings. First, our results suggested that JEV NS3 protein induced miR-466d-3p degradation, which promoted IL-1β expression and JEV replication. Second, arginine molecules on NS3 were the main miRNA-binding sites, because we demonstrated that miRNA degradation was abolished if arginines at R226 and R202 were mutated. Our study provides new insights into the molecular mechanism of JEV and reveals several amino acid sites that could be mutated for a JEV vaccine.
    Matched MeSH terms: Interleukin-1beta/biosynthesis*
  3. Kardia E, Mohamed R, Yahaya BH
    Sci Rep, 2017 09 15;7(1):11732.
    PMID: 28916766 DOI: 10.1038/s41598-017-11992-6
    Airway stem/progenitor epithelial cells (AECs) are notable for their differentiation capacities in response to lung injury. Our previous finding highlighted the regenerative capacity of AECs following transplantation in repairing tracheal injury and reducing the severity of alveolar damage associated acute lung injury in a rabbit model. The goal of this study is to further investigate the potential of AECs to re-populate the tracheal epithelium and to study their stimulatory effect on inhibiting pro-inflammatory cytokines, epithelial cell migration and proliferation, and epithelial-to-mesenchymal transition (EMT) process following tracheal injury. Two in vitro culture assays were applied in this study; the direct co-culture assay that involved a culture of decellularised tracheal epithelium explants and AECs in a rotating tube, and indirect co-culture assay that utilized microporous membrane-well chamber system to separate the partially decellularised tracheal epithelium explants and AEC culture. The co-culture assays provided evidence of the stimulatory behaviour of AECs to enhance tracheal epithelial cell proliferation and migration during early wound repair. Factors that were secreted by AECs also markedly suppressed the production of IL-1β and IL-6 and initiated the EMT process during tracheal remodelling.
    Matched MeSH terms: Interleukin-1beta/metabolism
  4. Bakar MH, Sarmidi MR, Kai CK, Huri HZ, Yaakob H
    Int J Mol Sci, 2014 Dec 02;15(12):22227-57.
    PMID: 25474091 DOI: 10.3390/ijms151222227
    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.
    Matched MeSH terms: Interleukin-1beta/biosynthesis
  5. Huang L, Qi W, Zuo Y, Alias SA, Xu W
    Dev Comp Immunol, 2020 12;113:103779.
    PMID: 32735958 DOI: 10.1016/j.dci.2020.103779
    The present study reported the first pathogenic Aeromonas salmonicida (SRW-OG1) isolated from the warm water fish orange-spotted grouper (Epinephelus coioides), and investigated the function of Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor which has been recently found to be closely associated with immune response in mammals and E. coioides. Our results showed that AhR was activated by an unknown ligand in the spleen, intestine and macrophages. Meanwhile, ahr1a and ahr1b were significantly increased in the spleen, intestine and macrophages, whereas ahr2 was only increased in the intestine, which indicated that the contribution of AhR2 to the immune response may be less than that of AhR1a and AhR1b. Some key genes involved in the macrophage inflammatory response, bacterial recognition, and intestinal immunity were significantly up-regulated in the SRW-OG1 infected E. coioides. Nevertheless, declining macrophage ROS production and down-regulation of related genes were also observed, suggesting that SRW-OG1 utilized its virulence mechanisms to prevent macrophage ROS production. Furthermore, AhR inhibitor 3', 4'-DMF and the silence of ahr1a or ahr1b significantly rescued the increased IL-1β and IL-8 induced by SRW-OG1 infection, which proved that the induction of IL-1β and IL-8 in E. coioides macrophages was mediated by AhR. However, BPI/LBP, ROS production and related genes were not affected by AhR. The survival rate and immune escape rate of SRW-OG1 in the ahr1a/ahr1b knocked-down and 3', 4'-DMF treated macrophages were significantly increased compared with those in wild type macrophages. Taken together, it was preliminarily confirmed that ahr1a and ahr1b played an important role in the immune response against A. salmonicida SRW-OG1.
    Matched MeSH terms: Interleukin-1beta/metabolism
  6. Yogarajah T, Ong KC, Perera D, Wong KT
    Sci Rep, 2017 07 19;7(1):5845.
    PMID: 28724943 DOI: 10.1038/s41598-017-05589-2
    Encephalomyelitis is a well-known complication of hand, foot, and mouth disease (HFMD) due to Enterovirus 71 (EV71) infection. Viral RNA/antigens could be detected in the central nervous system (CNS) neurons in fatal encephalomyelitis but the mechanisms of neuronal cell death is not clearly understood. We investigated the role of absent in melanoma 2 (AIM2) inflammasome in neuronal cell death, and its relationship to viral replication. Our transcriptomic analysis, RT-qPCR, Western blot, immunofluorescence and flow cytometry studies consistently showed AIM2 gene up-regulation and protein expression in EV-A71-infected SK-N-SH cells. Downstream AIM2-induced genes, CARD16, caspase-1 and IL-1β were also up-regulated and caspase-1 was activated to form cleaved caspase-1 p20 subunits. As evidenced by 7-AAD positivity, pyroptosis was confirmed in infected cells. Overall, these findings have a strong correlation with decreases in viral titers, copy numbers and proteins, and reduced proportions of infected cells. AIM2 and viral antigens were detected by immunohistochemistry in infected neurons in inflamed areas of the CNS in EV-A71 encephalomyelitis. In infected AIM2-knockdown cells, AIM2 and related downstream gene expressions, and pyroptosis were suppressed, resulting in significantly increased virus infection. These results support the notion that AIM2 inflammasome-mediated pyroptosis is an important mechanism of neuronal cell death and it could play an important role in limiting EV-A71 replication.
    Matched MeSH terms: Interleukin-1beta/metabolism
  7. Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al.
    Nat Microbiol, 2019 05;4(5):789-799.
    PMID: 30804542 DOI: 10.1038/s41564-019-0371-3
    Bats are special in their ability to host emerging viruses. As the only flying mammal, bats endure high metabolic rates yet exhibit elongated lifespans. It is currently unclear whether these unique features are interlinked. The important inflammasome sensor, NLR family pyrin domain containing 3 (NLRP3), has been linked to both viral-induced and age-related inflammation. Here, we report significantly dampened activation of the NLRP3 inflammasome in bat primary immune cells compared to human or mouse counterparts. Lower induction of apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and secretion of interleukin-1β in response to both 'sterile' stimuli and infection with multiple zoonotic viruses including influenza A virus (-single-stranded (ss) RNA), Melaka virus (PRV3M, double-stranded RNA) and Middle East respiratory syndrome coronavirus (+ssRNA) was observed. Importantly, this reduction of inflammation had no impact on the overall viral loads. We identified dampened transcriptional priming, a novel splice variant and an altered leucine-rich repeat domain of bat NLRP3 as the cause. Our results elucidate an important mechanism through which bats dampen inflammation with implications for longevity and unique viral reservoir status.
    Matched MeSH terms: Interleukin-1beta/genetics; Interleukin-1beta/immunology
  8. Phan CS, Ng SY, Kim EA, Jeon YJ, Palaniveloo K, Vairappan CS
    Mar Drugs, 2015 May;13(5):3103-15.
    PMID: 25996100 DOI: 10.3390/md13053103
    Two new bicyclogermacrenes, capgermacrenes A (1) and B (2), were isolated with two known compounds, palustrol (3) and litseagermacrane (4), from a population of Bornean soft coral Capnella sp. The structures of these metabolites were elucidated based on spectroscopic data. Compound 1 was found to inhibit the accumulation of the LPS-induced pro-inflammatory IL-1b and NO production by down-regulating the expression of iNOS protein in RAW 264.7 macrophages.
    Matched MeSH terms: Interleukin-1beta/metabolism
  9. Kevin, T.T.M., Nur Idanis, A.S., Anastasha, B., Mohd Faris, M.R., Faizah, O., Taty Anna, K.
    Medicine & Health, 2020;15(2):26-36.
    MyJurnal
    Curcumin adalah satu rempah tradisional yang mempunyai potensi untuk menyembuhkan pelbagai jenis penyakit inflamatori, termasuk artritis. Kajian ini dijalankan untuk memerhatikan kesan-kesan curcumin ke atas perubahan histopatologi dan aras interleukin-1β (IL-1β) di dalam artritis aruhan kolagen (CIA). Tiga puluh ekor tikus jantan Sprague-Dawley (150+50 g) dibahagikan kepada lima kumpulan secara rawak. Satu kumpulan dijadikan kumpulan kawalan normal (CTRL), manakala selebihnya disuntik dengan 150 μg emulsi kolagen secara subkutan pada hari 0. Kumpulan CTRL dan CIA-Curcumin-d0 masing-masing diberi suplimentasi harian minyak zaitun oil (1 ml/kg) dan curcumin (110 mg/ml/ kg) bermula pada hari 0. Kumpulan CIA-OV (kawalan negatif), CIA-Beta dan CIA-Curcumin-d14 pula, masing-masing diberi suplimentasi harian minyak zaitun (1 ml/kg), Betamethasone (0.5 mg/ml/kg), dan curcumin (110 mg/ml/kg) bermula pada hari 14. Suplimentasi harian tersebut diberi kepada tikus-tikus sehingga hari ke 42. Kajian ini menunjukkan bahawa kumpulan CIA-Beta (**P=0.00) dan CIA-Curcumin-d0 (**P=0.01) masing-masing mempamerkan purata skor histologi yang lebih rendah secara signifikan berbanding kumpulan CIA-OV. Aras IL-1β di dalam serum untuk kumpulan CIA-Beta dan CIA-Curcumin-d0 tidak meningkat secara signifikan pada hari ke 42 berbanding hari 0. Purata peningkatan aras IL-1β dari hari 0 ke hari 42 juga adalah rendah secara signifikan (**P≤0.01) untuk semua kumpulan CIA berbanding kumpulan CIA-OV. Tidak terdapat perbezaan yang signifikan dalan purata skor histologi dan aras IL-1β kumpulan of CIA-Curcumin-d0 berbanding kumpulan CIA-Beta. Kesimpulannya suplimentasi awal curcumin berpotensi untuk meminimakan perubahan yang disebabkan penyakit artritis aruhan kolagen pada tikus.
    Matched MeSH terms: Interleukin-1beta
  10. Lee KH, Chow YL, Sharmili V, Abas F, Alitheen NB, Shaari K, et al.
    Int J Mol Sci, 2012;13(3):2985-3008.
    PMID: 22489138 DOI: 10.3390/ijms13032985
    Our preliminary screening has shown that curcumin derivative BDMC33 [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] exerted promising nitric oxide inhibitory activity in activated macrophages. However, the molecular basis and mechanism for its pharmacological action is yet to be elucidated. The aim of this study was to investigate the anti-inflammatory properties of BDMC33 and elucidate its underlying mechanism action in macrophage cells. Our current study demonstrated that BDMC33 inhibits the secretion of major pro-inflammatory mediators in stimulated macrophages, and includes NO, TNF-α and IL-1β through interference in both nuclear factor kappaB (NF-κB) and mitogen activator protein kinase (MAPK) signaling cascade in IFN-γ/LPS-stimulated macrophages. Moreover, BDMC33 also interrupted LPS signaling through inhibiting the surface expression of CD-14 accessory molecules. In addition, the inhibitory action of BDMC33 not only restricted the macrophages cell (RAW264.7), but also inhibited the secretion of NO and TNF-α in IFN-γ/LPS-challenged microglial cells (BV-2). The experimental data suggests the inflammatory action of BDMC33 on activated macrophage-like cellular systems, which could be used as a future therapeutic agent in the management of chronic inflammatory diseases.
    Matched MeSH terms: Interleukin-1beta/biosynthesis; Interleukin-1beta/genetics
  11. Nazar Majeed Z, Philip K, Alabsi AM, Pushparajan S, Swaminathan D
    Dis Markers, 2016;2016:1804727.
    PMID: 28074077 DOI: 10.1155/2016/1804727
    Background. Several studies in the last decades have focused on finding a precise method for the diagnosis of periodontal disease in its early stages. Aim. To evaluate from current scientific literature the most common and precise method for gingival crevicular fluid (GCF) sample collection, biomarker analytical methods, and the variability of biomarker quantification, even when using the same analytical technique. Methodology. An electronic search was conducted on in vivo studies that presented clinical data on techniques used for GCF collection and biomarker analysis. Results. The results showed that 71.1%, 24.7%, and 4.1% of the studies used absorption, microcapillary, and washing techniques, respectively, in their gingival crevicular fluid collection. 73.1% of the researchers analyzed their samples by using enzyme-linked immunosorbent assay (ELISA). 22.6%, 19.5%, and 18.5% of the researchers included interleukin-1 beta (IL-1β), matrix metalloproteinase-8 (MMP-8), and tumor necrosis factor-alpha (TNF-α), respectively, in their studies as biomarkers for periodontal disease. Conclusion. IL-1β can be considered among the most common biomarkers that give precise results and can be used as an indicator of periodontal disease progression. Furthermore, paper strips are the most convenient and accurate method for gingival crevicular fluid collection, while enzyme-linked immunosorbent assay can be considered the most conventional method for the diagnosis of biofluids.
    Matched MeSH terms: Interleukin-1beta/metabolism
  12. Mohd Sairazi NS, Sirajudeen KNS, Muzaimi M, Mummedy S, Asari MA, Sulaiman SA
    PMID: 30108663 DOI: 10.1155/2018/7287820
    The protective effect of tualang honey (TH) on neuroinflammation and caspase-3 activity in rat cerebral cortex, cerebellum, and brainstem after kainic acid- (KA-) induced status epilepticus was investigated. Male Sprague-Dawley rats were pretreated orally with TH (1.0 g/kg body weight) five times at 12 h intervals. KA (15 mg/kg body weight) was injected subcutaneously 30 min after last oral treatment. Rats were sacrificed at 2 h, 24 h, and 48 h after KA administration. Neuroinflammation markers and caspase-3 activity were analyzed in different brain regions 2 h, 24 h, and 48 h after KA administration. Administration of KA induced epileptic seizures. KA caused significant (p < 0.05) increase in the level of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), glial fibrillary acidic protein (GFAP), allograft inflammatory factor 1 (AIF-1), and cyclooxygenase-2 (COX-2) and increase in the caspase-3 activity in the rat cerebral cortex, cerebellum, and brainstem at multiple time points. Pretreatment with TH significantly (p < 0.05) reduced the elevation of TNF-α, IL-1β, GFAP, AIF-1, and COX-2 level in those brain regions at multiple time points and attenuated the increased caspase-3 activity in the cerebral cortex. In conclusion, TH reduced neuroinflammation and caspase-3 activity after kainic acid- (KA-) induced status epilepticus.
    Matched MeSH terms: Interleukin-1beta
  13. Gopinath VK, Musa M, Samsudin AR, Sosroseno W
    Br J Biomed Sci, 2006;63(4):176-8.
    PMID: 17201208
    Matched MeSH terms: Interleukin-1beta/physiology
  14. Griffiths MJ, Ooi MH, Wong SC, Mohan A, Podin Y, Perera D, et al.
    J Infect Dis, 2012 Sep 15;206(6):881-92.
    PMID: 22829643 DOI: 10.1093/infdis/jis446
    BACKGROUND: Enterovirus 71 (EV71) causes large outbreaks of hand, foot, and mouth disease (HFMD), with severe neurological complications and cardio-respiratory compromise, but the pathogenesis is poorly understood.

    METHODS: We measured levels of 30 chemokines and cytokines in serum and cerebrospinal fluid (CSF) samples from Malaysian children hospitalized with EV71 infection (n = 88), comprising uncomplicated HFMD (n = 47), meningitis (n = 8), acute flaccid paralysis (n = 1), encephalitis (n = 21), and encephalitis with cardiorespiratory compromise (n = 11). Four of the latter patients died.

    RESULTS: Both pro-inflammatory and anti-inflammatory mediator levels were elevated, with different patterns of mediator abundance in the CSF and vascular compartments. Serum concentrations of interleukin 1β (IL-1β), interleukin 1 receptor antagonist (IL-1Ra), and granulocyte colony-stimulating factor (G-CSF) were raised significantly in patients who developed cardio-respiratory compromise (P = .013, P = .004, and P < .001, respectively). Serum IL-1Ra and G-CSF levels were also significantly elevated in patients who died, with a serum G-CSF to interleukin 5 ratio of >100 at admission being the most accurate prognostic marker for death (P < .001; accuracy, 85.5%; sensitivity, 100%; specificity, 84.7%).

    CONCLUSIONS: Given that IL-1β has a negative inotropic action on the heart, and that both its natural antagonist, IL-1Ra, and G-CSF are being assessed as treatments for acute cardiac impairment, the findings suggest we have identified functional markers of EV71-related cardiac dysfunction and potential treatment options.

    Matched MeSH terms: Interleukin-1beta/blood*
  15. Karkada G, Maiya GA, Houreld NN, Arany P, Rao Kg M, Adiga S, et al.
    Arch Physiol Biochem, 2020 Dec 28.
    PMID: 33370535 DOI: 10.1080/13813455.2020.1861025
    CONTEXT: Delayed wound healing in diabetes mellitus (DM) is due to the overlapping phases of the healing process. The prolonged inflammation and altered levels of inflammatory cytokines lead to deformed cell proliferation. Photobiomodulation alleviates the expression of inflammatory cytokines and promotes tissue repair, thereby restoring the wound healing process.

    OBJECTIVE: To find out the effect of photobiomodulation therapy (PBMT) in the healing dynamics of diabetic wounds with particular emphasis on interleukin-6, interleukin-1β, and tumour necrosis factor-α.

    METHODS: Scientific databases searched using keywords of the population: DM, intervention: PBMT, and outcomes: inflammatory cytokines.

    RESULTS: We have included five preclinical studies in the present systematic review for qualitative analysis. These studies evaluated the effect of PBMT at different wavelengths, dosage, and time on wound healing in DM.

    CONCLUSIONS: The systematic review concludes that PBMT regulates inflammatory cytokines levels, enhances cell proliferation, and migration, thereby improving the wound healing properties.

    Matched MeSH terms: Interleukin-1beta
  16. Bahrampour Juybari K, Kamarul T, Najafi M, Jafari D, Sharifi AM
    Cell Tissue Res, 2018 08;373(2):407-419.
    PMID: 29582166 DOI: 10.1007/s00441-018-2825-y
    Strategies based on mesenchymal stem cell (MSC) therapy for restoring injured articular cartilage are not effective enough in osteoarthritis (OA). Due to the enhanced inflammation and oxidative stress in OA microenvironment, differentiation of MSCs into chondrocytes would be impaired. This study aims to explore the effects of diallyl disulfide (DADS) on IL-1β-mediated inflammation and oxidative stress in human adipose derived mesenchymal stem cells (hADSCs) during chondrogenesis. MTT assay was employed to examine the effects of various concentrations of DADS on the viability of hADSCs at different time scales to obtain non-cytotoxic concentration range of DADS. The effects of DADS on IL-1β-induced intracellular ROS generation and lipid peroxidation were evaluated in hADSCs. Western blotting was used to analyze the protein expression levels of IκBα (np), IκBα (p), NF-κB (np) and NF-κB (p). Furthermore, the gene expression levels of antioxidant enzymes in hADSCs and chondrogenic markers at days 7, 14 and 21 of differentiation were measured using qRT-PCR. The results showed that addition of DADS significantly enhanced the mRNA expression levels of antioxidant enzymes as well as reduced ROS elevation, lipid peroxidation, IκBα activation and NF-κB nuclear translocation in hADSCs treated with IL-1β. In addition, DADS could significantly increase the expression levels of IL-1β-induced impaired chondrogenic marker genes in differentiated hADSCs. Treatment with DADS may provide an effective approach to prevent the pro-inflammatory cytokines and oxidative stress as catabolic causes of chondrocyte cell death and enhance the protective anabolic effects by promoting chondrogenesis associated gene expressions in hADSCs exposed to OA condition.
    Matched MeSH terms: Interleukin-1beta/metabolism*
  17. Hosseinzadeh A, Jafari D, Kamarul T, Bagheri A, Sharifi AM
    J Cell Biochem, 2017 Jul;118(7):1879-1888.
    PMID: 28169456 DOI: 10.1002/jcb.25907
    The protective effects and mechanisms of DADS on IL-1β-mediated oxidative stress and mitochondrial apoptosis were investigated in C28I2 human chondrocytes. The effect of various concentrations of DADS (1, 5 10, 25, 50, and 100 μM) on C28I2 cell viability was evaluated in different times (2, 4, 8, 16, and 24 h) to obtain the non-cytotoxic concentrations of drug by MTT-assay. The protective effect of non-toxic concentrations of DADS on experimentally induced oxidative stress and apoptosis by IL-1β in C28I2 was evaluated. The effects of DADS on IL-1β-induced intracellular ROS production and lipid peroxidation were detected and the proteins expression of Nrf2, Bax, Bcl-2, caspase-3, total and phosphorylated JNK, and P38 MAPKs were analyzed by Western blotting. The mRNA expression of detoxifying phase II/antioxidant enzymes including heme oxygenase-1, NAD(P)H quinine oxidoreductase, glutathione S-transferase-P1, catalase, superoxide dismutase-1, glutathione peroxidase-1, -3, -4 were evaluated by reverse transcription-polymerase chain reaction. DADS in 1, 5, 10, and 25 μM concentrations had no cytotoxic effect after 24 h. Pretreatment with DADS remarkably increased Nrf2 nuclear translocation as well as the genes expression of detoxifying phase II/antioxidant enzymes and reduced IL-1β-induced elevation of ROS, lipid peroxidation, Bax/Bcl-2 ratio, caspase-3 activation, and JNK and P38 phosphorylation. DADS could considerably reduce IL-1β-induced oxidative stress and consequent mitochondrial apoptosis, as the major mechanisms of chondrocyte cell death in an experimental model of osteoarthritis. It may be considered as natural product in protecting OA-induced cartilage damage in clinical setting. J. Cell. Biochem. 118: 1879-1888, 2017. © 2017 Wiley Periodicals, Inc.
    Matched MeSH terms: Interleukin-1beta/pharmacology*
  18. Abdullah M, Chai PS, Loh CY, Chong MY, Quay HW, Vidyadaran S, et al.
    Mol Nutr Food Res, 2011 May;55(5):803-6.
    PMID: 21520494 DOI: 10.1002/mnfr.201100087
    Fruit and vegetables have therapeutic potential as they dampen inflammation, have no known side-effects and as whole foods have prospective additive and synergistic benefits. Th1 (IFN-γ(+) CD4(+))/Th2 (IL-4(+)CD4(+)) T cells play a vital role in mediating inflammatory responses and may be regulated by regulatory T cells (Tregs). Effects of Carica papaya on cells of healthy individuals were determined using flow cytometry methods. Significant down-regulation of IFN-γ(+) CD4(+) (p=0.03, n=13), up-regulation of IL-4(+) CD4(+) (p=0.04, n=13) T cells and up-regulation of CD3(+) CD4(+) CD25(+) CD127(-) (p=0.001, n=15) Tregs were observed after papaya consumption. In vitro cultures showed up-regulation of Tregs in male subjects and was significantly associated with levels of IL-1β in culture supernatants (R(2) =0.608, p=0.04, n=12). Other inflammatory cytokines were significantly suppressed. Papaya consumption may exert an anti-inflammatory response mediated through Tregs and have potential in alleviating inflammatory conditions.
    Matched MeSH terms: Interleukin-1beta/analysis
  19. Sarkar S, Leo BF, Carranza C, Chen S, Rivas-Santiago C, Porter AE, et al.
    PLoS One, 2015;10(11):e0143077.
    PMID: 26580078 DOI: 10.1371/journal.pone.0143077
    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications.
    Matched MeSH terms: Interleukin-1beta/genetics; Interleukin-1beta/immunology
  20. Giribabu N, Srinivasarao N, Swapna Rekha S, Muniandy S, Salleh N
    PMID: 25161691 DOI: 10.1155/2014/592062
    Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ-) induced adult male diabetic rats received 100 and 200 mg/kg/day body weight (b.w) C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na(+)/K(+)-, Ca(2+)- and Mg(2+)-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-α; interleukin, IL-6; and interleukin, IL-1β) and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx) were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition.
    Matched MeSH terms: Interleukin-1beta
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links