Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Afzal S, Samsudin EM, Julkapli NM, Hamid SB
    Environ Sci Pollut Res Int, 2016 Nov;23(22):23158-23168.
    PMID: 27591888
    For the synthesis of a highly active TiO2-chitosan nanocomposite, pH plays a crucial role towards controlling its morphology, size, crystallinity, thermal stability, and surface adsorption properties. The presence of chitosan (CS) biopolymer facilitates greater sustainability to the photoexcited electrons and holes on the catalysts' surface. The variation of synthesis pH from 2 to 5 resulted in different physico-chemical and photocatalytic properties, whereby a pH of 3 resulted in TiO2-chitosan nanocomposite with the highest photocatalytic degradation (above 99 %) of methylene orange (MO) dye. This was attributed to the efficient surface absorption properties, high crystallinity, and the presence of reactive surfaces of -NH2 and -OH groups, which enhances the adsorption-photodegradation effect. The larger surface oxygen vacancies coupled with reduced electron-hole recombination further enhanced the photocatalytic activity. It is undeniable that the pH during synthesis is critical towards the development of the properties of the TiO2-chitosan nanocomposite for the enhancement of photocatalytic activity.
    Matched MeSH terms: Phase Transition
  2. Ahmed Z, Hwang SJ, Shin SK, Song J
    J Hazard Mater, 2010 Apr 15;176(1-3):849-55.
    PMID: 20031312 DOI: 10.1016/j.jhazmat.2009.11.114
    The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in a bubble-column bioreactor, and the toluene removal efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The toluene removal efficiency was enhanced when granular activated carbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated toluene removal efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m(3)/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m(3)/h at a toluene loading of 291 g/m(3)/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high toluene removal capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene.
    Matched MeSH terms: Phase Transition
  3. Al-Waeli AHA, Sopian K, Kazem HA, Chaichan MT
    Environ Sci Pollut Res Int, 2023 Jul;30(34):81474-81492.
    PMID: 36689112 DOI: 10.1007/s11356-023-25321-0
    The bi-fluid photovoltaic thermal (PVT) collector was introduced to provide more heating options along with improved cooling capabilities for the PV module. Since its introduction, this type of PVT system has been investigated thoroughly in various original works. In this review paper, we intend to put the concept and applications of this technology into question and revise the main achievements and discoveries through research and development with a focus on climatic and operational parameters. The paper encompasses a critical review of the discussed research and future directions for PVT collectors. The main utilized operational modes are discussed in detail, which are (i) water used in both channels, (ii) water in one channel and air in the other, and (iii) air in both channels. The modes were found to lead to different enhancement and performance effects for the utilized photovoltaic modules. The impact of mass flow rate was also taken by keeping one working fluid constant while varying the other to obtain its impact on the energy and exergy efficiency of the collector. In some cases, the fluids were run simultaneously and, in other cases, independently.
    Matched MeSH terms: Phase Transition
  4. Ali IL, Yunus N, Abu-Hassan MI
    J Prosthodont, 2008 Oct;17(7):545-9.
    PMID: 18761582 DOI: 10.1111/j.1532-849X.2008.00357.x
    This study compared the surface hardness, flexural strength, and flexural modulus of a light- and heat-cured urethane dimethacrylate (UDMA) to two conventional polymethyl methacrylate (PMMA) denture base resins. The effect of less-than-optimal processing condition on the hardness of internal and external surfaces of UDMA specimens was also investigated.
    Matched MeSH terms: Phase Transition
  5. Alsabery AI, Ishak MS, Chamkha AJ, Hashim I
    Entropy (Basel), 2018 May 03;20(5).
    PMID: 33265426 DOI: 10.3390/e20050336
    The problem of entropy generation analysis and natural convection in a nanofluid square cavity with a concentric solid insert and different temperature distributions is studied numerically by the finite difference method. An isothermal heater is placed on the bottom wall while isothermal cold sources are distributed along the top and side walls of the square cavity. The remainder of these walls are kept adiabatic. Water-based nanofluids with Al 2 O 3 nanoparticles are chosen for the investigation. The governing dimensionless parameters of this study are the nanoparticles volume fraction ( 0 ≤ ϕ ≤ 0.09 ), Rayleigh number ( 10 3 ≤ R a ≤ 10 6 ) , thermal conductivity ratio ( 0.44 ≤ K r ≤ 23.8 ) and length of the inner solid ( 0 ≤ D ≤ 0.7 ). Comparisons with previously experimental and numerical published works verify a very good agreement with the proposed numerical method. Numerical results are presented graphically in the form of streamlines, isotherms and local entropy generation as well as the local and average Nusselt numbers. The obtained results indicate that the thermal conductivity ratio and the inner solid size are excellent control parameters for an optimization of heat transfer and Bejan number within the fully heated and partially cooled square cavity.
    Matched MeSH terms: Phase Transition
  6. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I
    Sci Rep, 2018 May 09;8(1):7410.
    PMID: 29743641 DOI: 10.1038/s41598-018-25749-2
    The problem of steady, laminar natural convection in a discretely heated and cooled square cavity filled by an alumina/water nanofluid with a centered heat-conducting solid block under the effects of inclined uniform magnetic field, Brownian diffusion and thermophoresis is studied numerically by using the finite difference method. Isothermal heaters and coolers are placed along the vertical walls and the bottom horizontal wall, while the upper horizontal wall is kept adiabatic. Water-based nanofluids with alumina nanoparticles are chosen for investigation. The governing parameters of this study are the Rayleigh number (103 ≤ Ra ≤ 106), the Hartmann number (0 ≤ Ha ≤ 50), thermal conductivity ratio (0.28 ≤ k w  ≤ 16), centered solid block size (0.1 ≤ D ≤ 0.7) and the nanoparticles volume fraction (0 ≤ ϕ ≤ 0.04). The developed computational code is validated comprehensively using the grid independency test and numerical and experimental data of other authors. The obtained results reveal that the effects of the thermal conductivity ratio, centered solid block size and the nanoparticles volume fraction are non-linear for the heat transfer rate. Therefore, it is possible to find optimal parameters for the heat transfer enhancement in dependence on the considered system. Moreover, high values of the Rayleigh number and nanoparticles volume fraction characterize homogeneous distributions of nanoparticles inside the cavity. High concentration of nanoparticles can be found near the centered solid block where thermal plumes from the local heaters interact.
    Matched MeSH terms: Phase Transition
  7. Alsabery AI, Tayebi T, Kadhim HT, Ghalambaz M, Hashim I, Chamkha AJ
    J Adv Res, 2021 May;30:63-74.
    PMID: 34026287 DOI: 10.1016/j.jare.2020.09.008
    Introduction: Mixed convection flow and heat transfer within various cavities including lid-driven walls has many engineering applications. Investigation of such a problem is important in enhancing the performance of the cooling of electric, electronic and nuclear devices and controlling the fluid flow and heat exchange of the solar thermal operations and thermal storage.

    Objectives: The main aim of this fundamental investigation is to examine the influence of a two-phase hybrid nanofluid approach on mixed convection characteristics including the consequences of varying Richardson number, number of oscillations, nanoparticle volume fraction, and dimensionless length and dimensionless position of the solid obstacle.

    Methods: The migration of composite hybrid nanoparticles due to the nano-scale forces of the Brownian motion and thermophoresis was taken into account. There is an inner block near the middle of the enclosure, which contributes toward the flow, heat, and mass transfer. The top lid cover wall of the enclosure is allowed to move which induces a mixed convection flow. The impact of the migration of hybrid nanoparticles with regard to heat transfer is also conveyed in the conservation of energy. The governing equations are molded into the non-dimensional pattern and then explained using the finite element technique. The effect of various non-dimensional parameters such as the volume fraction of nanoparticles, the wave number of walls, and the Richardson number on the heat transfer and the concentration distribution of nanoparticles are examined. Various case studies for Al2O3-Cu/water hybrid nanofluids are performed.

    Results: The results reveal that the temperature gradient could induce a notable concentration variation in the enclosure.

    Conclusion: The location of the solid block and undulation of surfaces are valuable in the control of the heat transfer and the concentration distribution of the composite nanoparticles.

    Matched MeSH terms: Phase Transition
  8. Anuar MAM, Amran NA, Ruslan MSH
    ACS Omega, 2021 Feb 02;6(4):2707-2716.
    PMID: 33553888 DOI: 10.1021/acsomega.0c04897
    Oil and grease remain the dominant contaminants in the palm oil mill effluent (POME) despite the conventional treatment of POME. The removal of residual oil from palm oil-water mixture (POME model) using the progressive freezing process was investigated. An optimization technique called response surface methodology (RSM) with the design of rotatable central composite design was applied to figure out the optimum experimental variables generated by Design-Expert software (version 6.0.4. Stat-Ease, trial version). Besides, RSM also helps to investigate the interactive effects among the independent variables compared to one factor at a time. The variables involved are coolant temperature, XA (4-12 °C), freezing time, XB (20-60 min), and circulation flow, XC (200-600 rpm). The statistical analysis showed that a two-factor interaction model was developed using the obtained experimental data with a coefficient of determination (R2) value of 0.9582. From the RSM-generated model, the optimum conditions for extraction of oil from the POME model were a coolant temperature of 6 °C in 50 min freezing time with a circulation flowrate of 500 rpm. The validation of the model showed that the predicted oil yield and experimental oil yield were 92.56 and 93.20%, respectively.
    Matched MeSH terms: Phase Transition
  9. Ba-Abbad MM, Kadhum AA, Mohamad AB, Takriff MS, Sopian K
    Chemosphere, 2013 Jun;91(11):1604-11.
    PMID: 23384541 DOI: 10.1016/j.chemosphere.2012.12.055
    The optical properties of a ZnO photocatalyst were enhanced with various dopant concentrations of Fe(3+). Doped ZnO nanoparticles were synthesized via a sol-gel method without the use of capping agents or surfactants and was then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that ZnO has a wurtzite, hexagonal structure and that the Fe(3+) ions were well incorporated into the ZnO crystal lattice. As the Fe(3+) concentration increased from 0.25 wt.% to 1 wt.%, the crystal size decreased in comparison with the undoped ZnO. The spectral absorption shifts of the visible light region (red shift) and the band gap decreases for each Fe-ZnO sample were investigated. The photocatalytic activities of the ZnO and Fe-ZnO samples were evaluated based on the degradation of 2-chlorophenol in aqueous solution under solar radiation. The samples with a small concentration of Fe(3+) ions showed enhanced photocatalytic activity with an optimal maximum performance at 0.5 wt.%. The results indicated that toxicity removal of 2-chlorophenol at same line of degradation efficiency. Small crystallite size and low band gap were attributed to high activities of Fe-ZnO samples under various concentrations of Fe(3+) ions compared to undoped ZnO.
    Matched MeSH terms: Phase Transition
  10. Bangbai C, Techitdheera W, Chongsri K, Pecharapa W
    Sains Malaysiana, 2013;42:239-246.
    In this work, the preparation of ZnO, N-doped ZnO (NZO), Al-doped ZnO (AZO) and Al, N-doped ZnO (ANZO) thin films by the sol-gel spin-coating method is reported. The structural properties and surface morphologies of films were characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The optical properties of the films were interpreted from their transmission spectra using UV-VIS spectrophotometer. The XRD and SEM results disclosed that the crystallization quality and grain size of as-prepared films were highly influenced by N and Al doping. UV-VIS spectrophotometer results indicated that Al and N additives could significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.
    Matched MeSH terms: Phase Transition
  11. Chia TS, Quah CK
    Acta Crystallogr B Struct Sci Cryst Eng Mater, 2017 Apr 01;73(Pt 2):285-295.
    PMID: 28362293 DOI: 10.1107/S2052520616019405
    Isonicotinamide-4-methoxybenzoic acid co-crystal (1), C6H6N2O·C8H8O3, is formed through slow evaporation from methanol solution and it undergoes a first-order isosymmetry (monoclinic I2/a ↔ monoclinic I2/a) structural phase transition at Tc= 142.5 (5) K, which has been confirmed by an abrupt jump of crystallographic interaxial angle β from variable-temperature single-crystal XRD and small heat hysteresis (6.25 K) in differential scanning calorimetry measurement. The three-dimensional X-ray crystal structures of (1) at the low-temperature phase (LTP) (100, 140 and 142 K) and the high-temperature phase (HTP) (143, 150, 200, 250 and 300 K) were solved and refined as a simple non-disordered model with final R[F2> 2σ(F2)] ≃ 0.05. The asymmetric unit of (1) consists of crystallographically independent 4-methoxybenzoic acid (A) and isonicotinamide (B) molecules in both enantiotropic phases. Molecule A adopts a `near-hydroxyl' conformation in which the hydroxyl and methoxy groups are positioned on the same side. Both `near-hydroxyl' and `near-carbonyl' molecular conformations possess minimum conformational energies with an energy difference of phases. However, these ABBA arrays are displaced from planarity upon LTP-to-HTP transition and the changes in inter-array interactions are observed in two-dimensional fingerprint plots of their Hirshfeld surfaces. The PIXEL energies of each molecular pair in both phases were calculated to investigate the difference in intermolecular interaction energies before and after the displacement of ABBA arrays from planarity, which directly leads to the single-crystal-to-single-crystal phase transition of (1).
    Matched MeSH terms: Phase Transition
  12. Chieng N, Teo X, Cheah MH, Choo ML, Chung J, Hew TK, et al.
    J Pharm Sci, 2019 12;108(12):3848-3858.
    PMID: 31542436 DOI: 10.1016/j.xphs.2019.09.013
    The study aims to characterize the structural relaxation times of quench-cooled co-amorphous systems using Kohlrausch-Williams-Watts (KWW) and to correlate the relaxation data with the onset of crystallization. Comparison was also made between the relaxation times obtained by KWW and the width of glass transition temperature (ΔTg) methods (simple and quick). Differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and polarized light microscopy were used to characterize the systems. Results showed that co-amorphous systems yielded a single Tg and ΔCp, suggesting the binary mixtures exist as a single amorphous phase. A narrow step change at Tg indicates the systems were fragile glasses. In co-amorphous nap-indo and para-indo, experimental Tgs were in good agreement with the predicted Tg. However, the Tg of co-amorphous nap-cim and indo-cim were 20°C higher than the predicted Tg, possibly due to stronger molecular interactions. Structural relaxation times below the experimental Tg were successfully characterized using the KWW and ΔTg methods. The comparison plot showed that KWW data are directly proportional to the ½ power of ΔTg data, after adjusting for a small offset. A moderate positive correlation was observed between the onset of crystallization and the KWW data. Structural relaxation times may be useful predictor of physical stability of co-amorphous systems.
    Matched MeSH terms: Phase Transition
  13. Cik Rohaida CH, Idris B, Mohd Reusmaazran Y, Rusnah M, Fadzley Izwan AM
    Med J Malaysia, 2004 May;59 Suppl B:156-7.
    PMID: 15468865
    A mixture with different compositions of HA and TCP were synthesize in this work by precipitation method using Ca(NO3)2 4H2 and (NH4)2HPO4 as the starting materials. A mixture with HA and TCP phases in different ratios were produced. The powders were sintered from 1000 degrees C to 1250 degrees C. The phase compositions of the mixtures were then studied via XRD. This work shows that the pH value determines the different phase compositions of the HA-TCP mixture. Chemical analyses were carried out by FTIR. The microstructure was observed under SEM.
    Matched MeSH terms: Phase Transition
  14. Dabbagh A, Abdullah BJ, Abdullah H, Hamdi M, Kasim NH
    J Pharm Sci, 2015 Aug;104(8):2414-28.
    PMID: 26073304 DOI: 10.1002/jps.24536
    Nanoparticle-based hyperthermia is an effective therapeutic approach that allows time- and site-specific treatment with minimized off-site effects. The recent advances in materials science have led to design a diversity of thermosensitive nanostructures that exhibit different mechanisms of thermal response to the external stimuli. This article aims to provide an extensive review of the various triggering mechanisms in the nanostructures used as adjuvants to hyperthermia modalities. Understanding the differences between various mechanisms of thermal response in these nanostructures could help researchers in the selection of appropriate materials for each experimental and clinical condition as well as to address the current shortcomings of these mechanisms with improved material design.
    Matched MeSH terms: Phase Transition
  15. Daryabor F, Tangang F, Liew J
    Sains Malaysiana, 2014;43:389-398.
    This study investigates the southwest monsoon circulation and temperature along the east coast of Peninsular Malaysia by using the Regional Ocean Modeling System at 9 km resolution. The simulated circulation shows strong northward flowing western boundary currents along the east coast of Peninsular Malaysia with maximum speed of approximately of 0.6-0.7 ms-1. The western boundary current, that extends to a depth of about 35 m, continues flowing northward up to approximately 7oN where it changes direction eastward. The circulation along the east coast of Peninsular Malaysia is also characterized by two anti-cyclonic eddies. Furthermore, an elongated of cooler sea surface temperature that stretches along the coast was also simulated. The existence of this cool SST pattern is associated with coastal upwelling process due to localized lifting of isotherms near the coast as a response to the southerly-southwesterly wind stress along the coast during the southwest monsoon.
    Matched MeSH terms: Phase Transition
  16. Fakharian MH, Tamimi N, Abbaspour H, Mohammadi Nafchi A, Karim AA
    Carbohydr Polym, 2015 Nov 5;132:156-63.
    PMID: 26256336 DOI: 10.1016/j.carbpol.2015.06.033
    Composite sago starch-based system was developed and characterized with the aim to find an alternative to gelatin in the processing of pharmaceutical capsules. Dually modified (Hydrolyzed-Hydroxypropylated) sago starches were combined with κ-carrageenan (0.25, 0.5, 0.75, and 1%). The rheological properties of the proposed composite system were measured and compared with gelatin as reference material. Results show that combination of HHSS12 (Hydrolysed-hydroxypropylated sago starch at 12h) with 0.5% κ-carrageenan was comparable to gelatin rheological behavior in pharmaceutical capsule processing. The solution viscosity at 50 °C and sol-gel transition of the proposed composite system were comparable to those of gelatin. The viscoelastic moduli (G' and G") for the proposed system were lower than those of gelatin. These results illustrate that by manipulation of the constituents of sago starch-based composite system, a suitable alternative to gelatin can be produced with comparable properties and this could find potential application in pharmaceutical capsule industry.
    Matched MeSH terms: Phase Transition
  17. Fakhru'l-Razi A, Peyda M, Ab Karim Ghani WA, Abidin ZZ, Zakaria MP, Moeini H
    Biotechnol Prog, 2014 Jul-Aug;30(4):797-805.
    PMID: 24692323 DOI: 10.1002/btpr.1911
    In this work, crude oil biodegradation has been optimized in a solid-liquid two phase partitioning bioreactor (TPPB) by applying a response surface methodology based d-optimal design. Three key factors including phase ratio, substrate concentration in solid organic phase, and sodium chloride concentration in aqueous phase were taken as independent variables, while the efficiency of the biodegradation of absorbed crude oil on polymer beads was considered to be the dependent variable. Commercial thermoplastic polyurethane (Desmopan®) was used as the solid phase in the TPPB. The designed experiments were carried out batch wise using a mixed acclimatized bacterial consortium. Optimum combinations of key factors with a statistically significant cubic model were used to maximize biodegradation in the TPPB. The validity of the model was successfully verified by the good agreement between the model-predicted and experimental results. When applying the optimum parameters, gas chromatography-mass spectrometry showed a significant reduction in n-alkanes and low molecular weight polycyclic aromatic hydrocarbons. This consequently highlights the practical applicability of TPPB in crude oil biodegradation.
    Matched MeSH terms: Phase Transition
  18. Fatmahardi I, Mustapha M, Ahmad A, Derman MN, Lenggo Ginta T, Taufiqurrahman I
    Materials (Basel), 2021 Apr 30;14(9).
    PMID: 33946335 DOI: 10.3390/ma14092336
    Resistance spot welding (RSW) is one of the most effective welding methods for titanium alloys, in particular Ti-6Al-4V. Ti-6Al-4V is one of the most used materials with its good ductility, high strength, weldability, corrosion resistance, and heat resistance. RSW and Ti-6Al-4V materials are often widely used in industrial manufacturing, particularly in automotive and aerospace industries. To understand the phenomenon of resistance spot weld quality, the physical and mechanical properties of Ti-6Al-4V spot weld are essential to be analyzed. In this study, an experiment was conducted using the Taguchi L9 method to find out the optimum level of the weld joint strength. The given optimum level sample was analyzed to study the most significant affecting RSW parameter, the failure mode, the weld nugget microstructure, and hardness values. The high heat input significantly affect the weld nugget temperature to reach and beyond the β-transus temperature. It led to an increase in the weld nugget diameter and the indentation depth. The expulsion appeared in the high heat input and decreased the weld nugget strength. It was caused by the molten material ejection in the fusion zone. The combination of high heat input and rapid air cooling at room temperature generated a martensite microstructure in the fusion zone. It increased the hardness, strength, and brittleness but decreased the ductility.
    Matched MeSH terms: Phase Transition
  19. Fun HK, Chantrapromma S, Ong LH
    Molecules, 2014 Jul 11;19(7):10137-49.
    PMID: 25019557 DOI: 10.3390/molecules190710137
    Crystals of 1,6-hexanedioic acid (I) undergo a temperature-dependent reversible phase transition from monoclinic P21/c at a temperature higher than the critical temperature (Tc) 130 K to another monoclinic P21/c at temperature lower than Tc. The phase transition is of first order, involving a discontinuity and a tripling of the b-axis at Tc whereas the other unit cell parameters vary continuously. The transition is described by the phenomenological Landau theory. The crystal structure analyses for data collected at 297(2) K and 120.0(1) K show that there is half of a molecule of (I) in the asymmetric unit at 297(2) K whereas there are one and a half molecules of (I) in the asymmetric unit at 120.0(1) K. At both temperatures, 297(2) and 120.0(1) K, intermolecular O-H···O hydrogen bonds link the molecules of I into infinite 1D chains along [101] direction. However there are significantly more O-H···O hydrogen bonds presented in the 120.0(1) K polymorph, thereby indicating this phase transition is negotiated via hydrogen bonds. The relationship of the conformational changes and hydrogen bonding for these two polymorphs are explained in detail.
    Matched MeSH terms: Phase Transition*
  20. Gumel AM, Annuar MS, Heidelberg T
    PLoS One, 2012;7(9):e45214.
    PMID: 23028854 DOI: 10.1371/journal.pone.0045214
    The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C(8:0)) to oleic acid (C(18:1)) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1)H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d)) of 264.6 to 318.8 (± 0.2) (o)C, melting temperature (T(m)) of 43. (± 0.2) (o)C, glass transition temperature (T(g)) of -1.0 (± 0.2) (o)C and apparent melting enthalpy of fusion (ΔH(f)) of 100.9 (± 0.1) J g(-1).
    Matched MeSH terms: Phase Transition
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links