Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH
    Anal Bioanal Chem, 2011 Mar;399(8):2747-53.
    PMID: 21249338 DOI: 10.1007/s00216-011-4660-9
    Mitragyna speciosa (Kratom) is currently used as a drug of abuse. When monitoring its abuse in urine, several alkaloids and their metabolites must be considered. In former studies, mitragynine (MG), its diastereomer speciogynine (SG), and paynantheine and their metabolites could be identified in rat and human urine using LC-MS(n). In Kratom users' urines, besides MG and SG, further isomeric compounds were detected. To elucidate whether the MG and SG diastereomer speciociliatine (SC) and its metabolites represent further compounds, the phase I and II metabolites of SC were identified first in rat urine after the administration of the pure alkaloid. Then, the identified rat metabolites were screened for in the urine of Kratom users using the above-mentioned LC-MS(n) procedure. Considering the mass spectra and retention times, it could be confirmed that SC and its metabolites are so far the unidentified isomers in human urine. In conclusion, SC and its metabolites can be used as further markers for Kratom use, especially by consumption of raw material or products that contain a high amount of fruits of the Malaysian plant M. speciosa.
    Matched MeSH terms: Plant Extracts/metabolism
  2. Wan-Nadilah WA, Akhtar MT, Shaari K, Khatib A, Hamid AA, Hamid M
    BMC Complement Altern Med, 2019 Sep 05;19(1):245.
    PMID: 31488132 DOI: 10.1186/s12906-019-2655-9
    BACKGROUND: Cosmos caudatus is an annual plant known for its medicinal value in treating several health conditions, such as high blood pressure, arthritis, and diabetes mellitus. The α-glucosidase inhibitory activity and total phenolic content of the leaf aqueous ethanolic extracts of the plant at different growth stages (6, 8. 10, 12 and 14 weeks) were determined in an effort to ascertain the best time to harvest the plant for maximum medicinal quality with respect to its glucose-lowering effects.

    METHODS: The aqueous ethanolic leaf extracts of C. caudatus were characterized by NMR and LC-MS/MS. The total phenolic content and α-glucosidase inhibitory activity were evaluated by the Folin-Ciocalteu method and α-glucosidase inhibitory assay, respectively. The statistical significance of the results was evaluated using one-way ANOVA with Duncan's post hoc test, and correlation among the different activities was performed by Pearson's correlation test. NMR spectroscopy along with multivariate data analysis was used to identify the metabolites correlated with total phenolic content and α-glucosidase inhibitory activity of the C. caudatus leaf extracts.

    RESULTS: It was found that the α-glucosidase inhibitory activity and total phenolic content of the optimized ethanol:water (80:20) leaf extract of the plant increased significantly as the plant matured, reaching a maximum at the 10th week. The IC50 value for α-glucosidase inhibitory activity (39.18 μg mL- 1) at the 10th week showed greater potency than the positive standard, quercetin (110.50 μg mL- 1). Through an 1H NMR-based metabolomics approach, the 10-week-old samples were shown to be correlated with a high total phenolic content and α-glucosidase inhibitory activity. From the partial least squares biplot, rutin and flavonoid glycosides, consisting of quercetin 3-O-arabinofuranoside, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, and quercetin 3-O-xyloside, were identified as the major bioactive metabolites. The metabolites were identified by NMR spectroscopy (J-resolve, HSQC and HMBC experiments) and further supported by dereplication via LC-MS/MS.

    CONCLUSION: For high phytomedicinal quality, the 10th week is recommended as the best time to harvest C. caudatus leaves with respect to its glucose lowering potential.

    Matched MeSH terms: Plant Extracts/metabolism
  3. Alam MA, Zaidul IS, Ghafoor K, Sahena F, Hakim MA, Rafii MY, et al.
    BMC Complement Altern Med, 2017 Mar 31;17(1):181.
    PMID: 28359331 DOI: 10.1186/s12906-017-1684-5
    BACKGROUND: This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling.

    METHODS: Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS).

    RESULTS: The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p 

    Matched MeSH terms: Plant Extracts/metabolism
  4. Quah Y, Park NH, Lee EB, Lee KJ, Yi-Le JC, Ali MS, et al.
    BMC Complement Med Ther, 2022 Jan 04;22(1):5.
    PMID: 34983484 DOI: 10.1186/s12906-021-03486-w
    BACKGROUND: Trifolium pratense (red clover) ethanolic extract (TPEE) has been used as a popular over-the-counter remedy for the management of menopausal symptoms. Prolonged consumption of herbal extract has been shown to regulate the composition of gut microbiota. This study was designed to elucidate the influence of TPEE on the gut microbiota composition in the ovariectomized (OVX) rats.

    METHODS: OVX rats were treated with TPEE at 125, 250, 500 mg/kg/day, or controls (pomegranate extract, 500 mg/kg/day; estradiol, 25 μg/kg/day) for 12 weeks. Gut microbiota analysis was conducted by extracting the microbial DNA from fecal samples and microbiome taxonomic profiling was carried out by using next-generation sequencing. The levels of serum biomarkers were analyzed using enzyme-linked immunosorbent assay (ELISA) kit. The prediction of functional biomarker of microbiota was performed using PICRUSt to investigate the potential pathways associated with gut health and serum lipid profile regulation. To study the correlation between gut microbiota composition and serum lipid levels, Spearman's correlation coefficients were defined and analyzed. Additionally, gas chromatography-mass spectrometry analysis was conducted to uncover additional physiologically active ingredients.

    RESULTS: TPEE-treated OVX rats showed significant reduction in serum triglycerides (TG), total cholesterols (TCHOL), and LDL/VLDL levels but increase in HDL level. The alteration in the pathways involve in metabolism was the most common among the other KEGG categories. Particularly, TPEE also significantly reduced the relative abundance of sequences read associated with inflammatory bowel disease (IBD) and the peroxisome proliferator-activated receptor (PPAR) signalling pathway. TPEE intervention was seen to reduce the Firmicutes to Bacteroidetes (F/B) ratio in the OVX rats, denoting a reduction in microbial dysbiosis in the OVX rats. Correlation analysis at the phylum level revealed that Bacteriodetes and Proteobacteria were strongly correlated with serum TG, TCHOL and HDL levels. At the species level, Bifidobacterium pseudolongum group was seen to positively correlate with serum HDL level and negatively correlated with serum AST, ALT, LDL/VLDL, TCHOL, and TG levels.

    CONCLUSIONS: TPEE treatment showed therapeutic benefits by improving the intestinal microbiota composition which strongly correlated with the serum lipid and cholesterol levels in the OVX rats.

    Matched MeSH terms: Plant Extracts/metabolism*
  5. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Biomed Res Int, 2019;2019:6951927.
    PMID: 30868071 DOI: 10.1155/2019/6951927
    Secondary bioactive compounds of endophytes are inevitable biomolecules of therapeutical importance. In the present study, secondary metabolites profiling of an endophytic bacterial strain, Acinetobacter baumannii, were explored using GC-MS study. Presence of antioxidant substances and antioxidant properties in chloroform (CHL), diethyl ether (DEE), and ethyl acetate (EA) crude extracts of the endophytic bacteria were studied. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferrous ion chelating assay were evaluated. A total of 74 compounds were identified from the GC-MS analysis of the EA extract representing mostly alkane compounds followed by phenols, carboxylic acids, aromatic heterocyclic compounds, ketones, aromatic esters, aromatic benzenes, and alkenes. Among the two phenolic compounds, namely, phenol, 2,4-bis(1,1-dimethylethyl)- and phenol, 3,5-bis(1,1-dimethylethyl)-, the former was found in abundance (11.56%) while the latter was found in smaller quantity (0.14%). Moreover, the endophytic bacteria was found to possess a number of metal ions including Fe(II) and Cu(II) as 1307.13 ± 2.35 ppb and 42.38 ± 0.352 ppb, respectively. The extracts exhibited concentration dependent antioxidant and prooxidant properties at high and low concentrations, respectively. The presence of phenolic compounds and metal ions was believed to play an important role in the antioxidant and prooxidant potentials of the extracts. Further studies are suggested for exploring the untapped resource of endophytic bacteria for the development of novel therapeutic agents.
    Matched MeSH terms: Plant Extracts/metabolism
  6. Ling SK, Pisar MM, Man S
    Biol Pharm Bull, 2007 Jun;30(6):1150-2.
    PMID: 17541171
    The leaf, stem and root extracts of Chromolaena odorata were evaluated for their effect on platelet-activating factor (PAF) receptor binding on rabbit platelets using 3H-PAF as a ligand. The leaf extract demonstrated high PAF receptor binding inhibitory activity of 79.2+/-2.1% at 18.2 microg/ml. A total of eleven flavonoids were subsequently isolated from the active leaf extract and evaluated for their effects on PAF receptor binding. Eight of the flavonoids exhibited >50% inhibition on the binding activity at 18.2 microg/ml. These flavonoids were identified as eriodictyol 7,4'-dimethyl ether, quercetin 7,4'-methyl ether, naringenin 4'-methyl ether, kaempferol 4'-methyl ether, kaempferol 3-O-rutinoside, taxifolin 4'-methyl ether, taxifolin 7-methyl ether and quercetin 4'-methyl ether. Their IC50 values ranged from 19.5 to 62.1 microM.
    Matched MeSH terms: Plant Extracts/metabolism
  7. Prabhu S, Vijayakumar S, Manogar P, Maniam GP, Govindan N
    Biomed Pharmacother, 2017 Aug;92:528-535.
    PMID: 28575810 DOI: 10.1016/j.biopha.2017.05.077
    Peroxisome proliferator-activated receptor gamma (PPARγ), a type II nuclear receptor present in adipose tissue, colon and macrophages. It reduces the hyperglycemia associated metabolic syndromes. Particularly, type II diabetes-related cardiovascular system risk in human beings. The fatty acid storage and glucose metabolism are regulated by PPARγ activation in human body. According to recent reports commercially available PPARγ activating drugs have been causing severe side effects. At the same time, natural products have been proved to be a promising area of drug discovery. Recently, many studies have been attempted to screen and identify a potential drug candidate to activate PPARγ. Hence, in this study we have selected some of the bio-active molecules from traditional medicinal plants. Molecular docking studies have been carried out against the target, PPARγ. We Results suggested that Punigluconin has a efficient docking score and it is found to have good binding affinities than other ligands. Hence, we concluded that Punigluconin is a better drug candidate for activation of PPARγ gene expression. Further studies are necessary to confirm their efficacy and possibly it can develop as a potential drug in future.
    Matched MeSH terms: Plant Extracts/metabolism*
  8. Alqahtani YS, Chidrawar VR, Shiromwar S, Singh S, Maheshwari R, Chitme H, et al.
    Biomed Pharmacother, 2024 Apr;173:116358.
    PMID: 38430634 DOI: 10.1016/j.biopha.2024.116358
    Physical and psychological stress has an inverse relation with male libido and sperm quality. The present study investigates the potential fertility-enhancing properties of Desmodium gangeticum (DG) root extracts in male Wister rats subjected to immobilization-induced stress (SIMB). DG roots were extracted using n-hexane (HEDG), chloroform (CEDG), and water (AEDG). In the pilot study, aphrodisiac protentional was investigated at two doses (125 and 250 mg kg-1) of each extract. In the main study, the HEDG and AEDG at 125 and 250 mg kg-1 were challenged for the stress by immobilization (SIMB), for 6 h daily over 28 days. Parameters assessed included aphrodisiac effects, gonadosomatic index (GSI), semen quality, sperm quantity, fructose content, serum hormonal levels, testicular oxidative stress, and testicular histopathology. Additional in silico studies, including the lipid solubility index, molecular docking, molecular dynamics, and SymMap studies were conducted for validation. HEDG demonstrated significant aphrodisiac activity, improved - GSI, sperm quality and quantity, and fructose content, serum testosterone levels, histological changes induced by SIMB in the testes. Swiss ADME studies indicated Gangetin (a pterocarpan) had a high brain permeation index (4.81), a superior docking score (-8.22), and higher glide energy (-42.60), compared with tadalafil (-7.17). The 'Lig fit Prot' plot in molecular dynamics simulations revealed a strong alignment between Gangetin and phosphodiesterase type 5 (PDE5). HEDG exerts aphrodisiac effects by increasing blood testosterone levels and affecting PDE5 activity. The protective effects on spermatozoa-related parameters and testicular histological changes are attributed to the antioxidant and anti-inflammatory properties, of pterocarpan (gangetin).
    Matched MeSH terms: Plant Extracts/metabolism
  9. Salim YS, Abdullah AA, Nasri CS, Ibrahim MN
    Bioresour Technol, 2011 Feb;102(3):3626-8.
    PMID: 21115240 DOI: 10.1016/j.biortech.2010.11.020
    Poly(3-hydroxybutyrate-co-38 mol%-3-hydroxyvalerate) [P(3HB-co-38mol%-3HV)] was produced by Cupriavidus sp. USMAA2-4 in the presence of oleic acid and 1-pentanol. Due to enormous production of empty fruit bunch (EFB) in the oil palm plantation and high production cost of P(3HB-co-3HV), oil palm EFB fibers were used for biocomposites preparation. In this study, maleic anhydride (MA) and benzoyl peroxide (DBPO) were used to improve the miscibility between P(3HB-co-3HV) and EFB fibers. Introduction of MA into P(3HB-co-3HV) backbone reduced the molecular weight and improved the thermal stability of P(3HB-co-3HV). Thermal stability of P(3HB-co-3HV)/EFB composites was shown to be comparable to that of commercial packaging product. Composites with 35% EFB fibers content have the highest tensile strength compared to 30% and 40%. P(3HB-co-3HV)/EFB blends showed less chemicals leached compared to commercial packaging.
    Matched MeSH terms: Plant Extracts/metabolism*
  10. Ahuja A, Tyagi PK, Kumar M, Sharma N, Prakash S, Radha, et al.
    Cells, 2022 Sep 07;11(18).
    PMID: 36139367 DOI: 10.3390/cells11182792
    Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.
    Matched MeSH terms: Plant Extracts/metabolism
  11. Harinantenaina L, Asakawa Y
    Chem Pharm Bull (Tokyo), 2004 Nov;52(11):1382-4.
    PMID: 15516770
    In the course of our chemotaxonomic study of the liverworts growing in Madagascar, mastigophoric acid methyl ester, along with eleven known compounds were isolated from Mastigophora diclados. Isolated metabolites showed that the Malagasy Mastigophora is more related to the samples from Borneo and Japan than to the Taiwanese or Malaysian ones. The biosynthesis of the herbertane type sesquiterpenoids from Mastigophora diclados is suggested to be similar to those found in the genus Herbertus. The herbertane-type sesquiterpenoids were screened for Staphylococcus aureus strain inhibition.
    Matched MeSH terms: Plant Extracts/metabolism*
  12. Gill MSA, Saleem H, Ahemad N
    Curr Top Med Chem, 2020;20(12):1093-1104.
    PMID: 32091334 DOI: 10.2174/1568026620666200224100219
    Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.
    Matched MeSH terms: Plant Extracts/metabolism
  13. Ng SF, Tan LS, Buang F
    Drug Dev Ind Pharm, 2017 Jan;43(1):108-119.
    PMID: 27588411 DOI: 10.1080/03639045.2016.1224893
    Previous studies have shown that hydroxytyrosol (HT) can be a potential alternative therapeutic agent for the treatment of rheumatoid arthritis (RA). However, HT is extensively metabolized following oral administration, which leads to formulating HT in a topical vehicle to prolong drug action as well as to provide a localized effect. Hidrox-6 is a freeze-dried powder derived from fresh olives and contains a high amount of HT (∼3%) and other polyphenols. Alginate bilayer films containing 5% and 10% Hidrox-6 were formulated. The films were characterized with respect to their physical, morphology, rheological properties; drug content uniformity; and in vitro drug release. Acute dermal irritancy tests and a skin sensitization study were carried out in rats. An efficacy study of the bilayer films for RA was conducted using Freund's adjuvant-induced polyarthritis rats. Animal data showed that the bilayer film formulations did not cause skin irritancy. The efficacy in vivo results showed that the Hidrox-6 bilayer films lowered the arthritic scores, paw and ankle circumference, serum IL-6 level and cumulative histological scores compared with those measured for controls. The topical Hidrox-6 bilayer films improve synovitis and inflammatory symptoms in RA and can be a potential alternative to oral RA therapy.
    Matched MeSH terms: Plant Extracts/metabolism
  14. Pang KL, Chin KY, Nirwana SI
    PMID: 36597600 DOI: 10.2174/1871530323666230103153134
    BACKGROUND: The immunomodulatory effects of plants have been utilised to enhance the immunity of humans against infections. However, evidence of such effects of agarwood leaves is very limited despite the long tradition of consuming the leaves as tea.

    OBJECTIVE: This study aimed to investigate the immuno-modulatory effects of agarwood leaf extract (ALE) derived from Aquilaria malaccensis using RAW264.7 murine macrophages.

    METHODS: In this study, RAW264.7 macrophages were incubated with ALE alone for 26 hours or ALE for 2 hours, followed by bacterial lipopolysaccharide for 24 hours. The nitrite and cytokine production (tumour necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, and IL-10), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) expression in the macrophages were assayed.

    RESULTS: The study showed that ALE alone was immunostimulatory on the macrophages by increasing the nitrite, TNFα, and IL-6 production and COX2 expression (p<0.05 vs. untreated unstimulated cells). Pre-treatment of ALE suppressed nitrite level and iNOS expression but enhanced TNFα and IL-6 production and COX2 expression (p<0.05 vs. untreated lipopolysaccharides (LPS)-stimulated cells). ALE also increased IL-10 production regardless of LPS stimulation (p<0.05 vs. untreated cells).

    CONCLUSION: ALE was able to promote the immune response of macrophages by upregulating pro-inflammatory cytokine levels and COX2 expression. It also regulated the extent of the inflammation by reducing iNOS expression and increasing IL-10 levels. Thus, ALE may have a role in enhancing the innate immune system against infection; however, its validation from in vivo studies is still pending.

    Matched MeSH terms: Plant Extracts/metabolism
  15. Zamakshshari NH, Ee GCL, Ismail IS, Ibrahim Z, Mah SH
    Food Chem Toxicol, 2019 Nov;133:110800.
    PMID: 31479710 DOI: 10.1016/j.fct.2019.110800
    The stem bark of Calophyllum depressinervosum and Calophyllum buxifolium were extracted and examined for their antioxidant activities, together with cytotoxicity towards human cancer cells. The methanol extract of C. depressinervosum exhibited good DPPH and NO scavenging effects. The strongest BCB inhibition and FIC effects were shown by dichloromethane and ethyl acetate extracts of both species. Overall, DPPH, FRAP and FIC assays showed strong correlation with TPC. For cytotoxicity, hexane extract of C. depressinervosum possessed the strongest anti-proliferative activities towards SNU-1 cells while the hexane extract of C. buxifolium showed the strongest activity towards LS-174T and K562 cells with the IC50 values ranging from 7 to 17 μg/mL. The purification of plant extracts afforded eight xanthones, ananixanthone (1), caloxanthone B (2), caloxanthone I (3), caloxanthone J (4) xanthochymone B (5), thwaitesixanthone (6), 1,3,5,6-tetrahydroxyxanthone (7) and dombakinaxanthone (8). All the xanthones, except 1 were reported for the first time from both Calophyllum species. The xanthones were examined for their cytotoxic effect against K562 leukemic cells. Compounds 1 and 2 showed strong cytotoxicity with the IC50 values of 2.96 and 1.23 μg/mL, respectively. The molecular binding interaction of 2 was further investigated by performing molecular docking study with promising protein receptor Src kinase.
    Matched MeSH terms: Plant Extracts/metabolism
  16. Mohd Esa N, Abdul Kadir KK, Amom Z, Azlan A
    Food Chem, 2013 Nov 15;141(2):1306-12.
    PMID: 23790918 DOI: 10.1016/j.foodchem.2013.03.086
    Antioxidant activity of different rice extract and the effect on the levels of antioxidant enzyme activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), vitamin E, lipid peroxidation and liver enzymes in hyperlipidaemia rabbits were investigated. Germinated brown rice (GBR) has the highest antioxidant activity compared to white rice (WR) and brown rice (BR). All rice grains increased the activity of SOD and GPx. However, vitamin E levels increased only in the groups that received the BR and GBR diets. The reduction of lipid peroxidation levels and activity of hepatic enzymes (alanine transferase, ALT and aspartate transaminase, AST) were only significantly observed in the GBR group. In conclusion, GBR supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques. Furthermore, GBR diet can also reduce the level of hepatic enzymes.
    Matched MeSH terms: Plant Extracts/metabolism*
  17. Khattak A, Ahmad B, Rauf A, Bawazeer S, Farooq U, Ali J, et al.
    IET Nanobiotechnol, 2019 Feb;13(1):36-41.
    PMID: 30964035 DOI: 10.1049/iet-nbt.2018.5063
    The development of reliable and green methods for the fabrication of metallic nanoparticles (NPs) has many advantages in the field of nanotechnology. In this direction, the present work describes an eco-friendly and cost-effective protocol for the production of silver NPs (AgNPs) using an aqueous extract of Quercus semecarpifolia leaves. Different techniques were carried out for the characterisation of the synthesised AgNPs. The ultraviolet-visible spectroscopic analysis showed the highest absorbance peak at 430 nm. The particle size and structure were confirmed by scanning electron microscopy as well as transmission electron microscopy (TEM) analysis. From TEM imaging, it was revealed that the formed particles were spherical with an average size of 20-50 nm. The crystalline nature of the NPs was determined by X-ray powder diffraction patterns. Thermogravimetry and differential thermal analysis were also evaluated by a temperature increment from 100 to 1000°C. Bio-inspired synthesis of AgNPs was performed for their pharmacological evaluation in relation to the activities of the crude methanolic, n-hexane, chloroform, ethyl acetate, and aqueous extracts. Good cytotoxic activity was exhibited by the green-synthesised AgNPs (77%). Furthermore, the AgNPs were found to exhibit significant antioxidant activity at 300 μg/ml (82%). The AgNPs also exhibited good phytotoxic potential (75%).
    Matched MeSH terms: Plant Extracts/metabolism
  18. Muniran F, Bhore SJ, Shah FH
    Indian J Exp Biol, 2008 Jan;46(1):79-82.
    PMID: 18697576
    Three basal plant tissue culture media, namely, N6, MS, and modified Y3, were compared to optimize micropropagation protocol for E. guineensis. Full strength media were used separately to regenerate plantlets directly using immature zygotic embryos (IZEs), and through somatic embryogenesis of calli obtained from IZEs. The plantlets regenerated by direct regeneration on three media were examined for shoot length and rooting percentage. For the induction of callus, somatic embryogenesis, and rooting modified Y3 medium was the most effective. In conclusion, the results indicate that modified Y3 medium is the most suitable for direct regeneration, callus induction and somatic embryogenesis in E. guineensis.
    Matched MeSH terms: Plant Extracts/metabolism*
  19. Subramaniam S, Sabaratnam V, Kuppusamy UR, Tan YS
    Int J Med Mushrooms, 2014;16(3):259-67.
    PMID: 24941167
    Species of the genus Ganoderma are a cosmopolitan wood decaying white rot fungi, which has been used by the Asians for therapeutic purposes for centuries. In the present study, solid-substrate fermentation (SSF) of wheat grains (Triticum aestivum L.) was carried out with indigenous Ganoderma australe (KUM60813) and G. neo-japonicum (KUM61076) selected based on ethnomycological knowledge. G. lucidum (VITA GL) (a commercial strain) was also included in the study. Antioxidant activities of the crude ethanol and aqueous extracts of the fermented and unfermented wheat grains were investigated by ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC), diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging ability, and lipid peroxidation assay. Among the six mycelia extracts tested, the ethanol extract from wheat fermented with KUM61076 mycelia showed the most potent antioxidant activities, whereas the ethanol extract of wheat grains fermented with KUM60813 mycelia has a good potential in protecting frying oils against oxidation. Total phenolic content (TPC) in the ethanol extracts were higher than that in the aqueous extract. The wheat grains fermented with G. australe (KUM60813) and G. neo-japonicum KUM61076 have greater antioxidant potential compared to the commercially available G. lucidum (VITA GL). The antioxidant activities of the mycelia extracts had a positive correlation with their phenolic contents. Thus phenolic compounds may play a vital role in the antioxidant activities of the selected Ganoderma spp.
    Matched MeSH terms: Plant Extracts/metabolism
  20. Hamdi OA, Feroz SR, Shilpi JA, Anouar el H, Mukarram AK, Mohamad SB, et al.
    Int J Mol Sci, 2015;16(3):5180-93.
    PMID: 25756376 DOI: 10.3390/ijms16035180
    Curcumenol and curcumenone are two major constituents of the plants of medicinally important genus of Curcuma, and often govern the pharmacological effect of these plant extracts. These two compounds, isolated from C. zedoaria rhizomes were studied for their binding to human serum albumin (HSA) using the fluorescence quench titration method. Molecular docking was also performed to get a more detailed insight into their interaction with HSA at the binding site. Additions of these sesquiterpenes to HSA produced significant fluorescence quenching and blue shifts in the emission spectra of HSA. Analysis of the fluorescence data pointed toward moderate binding affinity between the ligands and HSA, with curcumenone showing a relatively higher binding constant (2.46 × 105 M-1) in comparison to curcumenol (1.97 × 104 M-1). Cluster analyses revealed that site I is the preferred binding site for both molecules with a minimum binding energy of -6.77 kcal·mol-1. However, binding of these two molecules to site II cannot be ruled out as the binding energies were found to be -5.72 and -5.74 kcal·mol-1 for curcumenol and curcumenone, respectively. The interactions of both ligands with HSA involved hydrophobic interactions as well as hydrogen bonding.
    Matched MeSH terms: Plant Extracts/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links