Displaying publications 1 - 20 of 943 in total

Abstract:
Sort:
  1. Sahabudin E, Kubo S, Yuzir MAM, Othman N, Nadia Md Akhir F, Suzuki K, et al.
    Bioengineered, 2024 Dec;15(1):2314888.
    PMID: 38375815 DOI: 10.1080/21655979.2024.2314888
    Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 μM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.
    Matched MeSH terms: Plants/metabolism
  2. Akbari SI, Prismantoro D, Permadi N, Rossiana N, Miranti M, Mispan MS, et al.
    Microbiol Res, 2024 Jun;283:127665.
    PMID: 38452552 DOI: 10.1016/j.micres.2024.127665
    Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.
    Matched MeSH terms: Plants/microbiology
  3. Wang C, Lin X, Zhang X, Show PL
    Environ Pollut, 2024 May 01;348:123860.
    PMID: 38537803 DOI: 10.1016/j.envpol.2024.123860
    Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation.
    Matched MeSH terms: Plants
  4. Tisserand R, van der Ent A, Nkrumah PN, Didier S, Sumail S, Morel JL, et al.
    Sci Total Environ, 2024 Apr 01;919:170691.
    PMID: 38325468 DOI: 10.1016/j.scitotenv.2024.170691
    Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.
    Matched MeSH terms: Plants/metabolism
  5. Imron MF, Hestianingsi WOA, Putranto TWC, Citrasari N, Abdullah SRS, Hasan HA, et al.
    Chemosphere, 2024 Apr;353:141595.
    PMID: 38438021 DOI: 10.1016/j.chemosphere.2024.141595
    Increasing aquaculture cultivation produces large quantities of wastewater. If not handled properly, it can have negative impacts on the environment. Constructed wetlands (CWs) are one of the phytoremediation methods that can be applied to treat aquaculture effluent. This research was aimed at determining the performance of Cyperus rotundus in removing COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate from the batch CW system. Treatment was carried out for 30 days with variations in the number of plants (10, 15, and 20) and variations in media height (10, 12, and 14 cm). The result showed that aquaculture effluent contains high levels of organic compounds and nutrients, and C. rotundus can grow and thrive in 100% of aquaculture effluent. Besides that, the use of C. rotundus in CWs with the effect of numbers of plants and media height showed performance of COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate with 70, 79, 90, 96, 64, 82, 92, and 48% of removal efficacy, respectively. There was no negative impact observed on C. rotundus growth after exposure to aquaculture effluent, as indicated by the increase in wet weight, dry weight, and growth rate when compared to the control. Thus, adding aquaculture effluent to CWs planted with C. rotundus supports the growth and development of plants while also performing phytoremediation.
    Matched MeSH terms: Plants
  6. Al-Obaidi JR, Jamaludin AA, Rahman NA, Ahmad-Kamil EI
    Planta, 2024 Mar 29;259(5):103.
    PMID: 38551683 DOI: 10.1007/s00425-024-04378-2
    Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.
    Matched MeSH terms: Plants/metabolism
  7. Duan X, Gu H, Lam SS, Sonne C, Lu W, Li H, et al.
    Chemosphere, 2024 Feb;349:140821.
    PMID: 38042424 DOI: 10.1016/j.chemosphere.2023.140821
    The rapid growth of population and economy has led to an increase in urban air pollutants, greenhouse gases, energy shortages, environmental degradation, and species extinction, all of which affect ecosystems, biodiversity, and human health. Atmospheric pollution sources are divided into direct and indirect pollutants. Through analysis of the sources of pollutants, the self-functioning of different plants can be utilized to purify the air quality more effectively. Here, we explore the absorption of greenhouse gases and particulate matter in cities as well as the reduction of urban temperatures by plants based on international scientific literature on plant air pollution mitigation, according to the adsorption, dust retention, and transpiration functions of plants. At the same time, it can also reduce the occurrence of extreme weather. It is necessary to select suitable tree species for planting according to different plant functions and environmental needs. In the context of tight urban land use, the combination of vertical greening and urban architecture, through the rational use of plants, has comprehensively addressed urban air pollution. In the future, in urban construction, attention should be paid to the use of heavy plants and the protection and development of green spaces. Our review provides necessary references for future urban planning and research.
    Matched MeSH terms: Plants/metabolism
  8. Ahmad J, Marsidi N, Sheikh Abdullah SR, Hasan HA, Othman AR, Ismail N', et al.
    Chemosphere, 2024 Feb;349:140881.
    PMID: 38048826 DOI: 10.1016/j.chemosphere.2023.140881
    Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.
    Matched MeSH terms: Plants/metabolism
  9. Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC
    J Environ Manage, 2024 Jan 01;349:119445.
    PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445
    Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
    Matched MeSH terms: Plants
  10. Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, et al.
    Biomed Pharmacother, 2024 Jan;170:116083.
    PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083
    As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
    Matched MeSH terms: Plants
  11. Lim XY, Lau MS, Zolkifli NA, Sastu Zakaria UR, Mohd Rahim NS, Lai NM, et al.
    PLoS One, 2024;19(4):e0297839.
    PMID: 38603736 DOI: 10.1371/journal.pone.0297839
    Herbal medicine is popularly used among patients who suffer from allergic rhinitis. This systematic review and meta-analysis was conducted to evaluate the efficacy and safety of single medicinal plants in the management of allergic rhinitis. We searched MEDLINE, CENTRAL, and Web of Science for randomised controlled trials which evaluated the use of single medicinal plant for allergic rhinitis among adults and children. Twenty-nine randomised controlled trials (n = 1879) were eligible while 27 (n = 1769) contributed data for meta-analyses. Most studies (studies = 20) compared medicinal plants against placebo and Petasites hybridus was most frequently investigated (studies = 5). Very-low-to-low-certainty evidence suggests that compared to placebo, single medicinal plants may improve overall total nasal symptoms (SMD -0.31, 95% CI -0.59 to -0.02; participants = 249; studies = 5; I2 = 21%) especially nasal congestion and sneezing; and rhinoconjunctivitis quality of life (RQLQ) scores (MD -0.46, 95% CI -0.84 to -0.07; participants = 148; studies = 3; I2 = 0%). Moderate-certainty evidence show no clear differences between single medicinal plants and antihistamine in overall symptoms (Total nasal symptoms: SMD -0.14, 95% CI -0.46 to 0.18; participants = 149; studies = 2; I2 = 0%). As adjunctive therapy, moderate-certainty evidence shows that medicinal plants improved SNOT-22 scores when given as intranasal treatment (MD -7.47, 95% CI -10.75 to -4.18; participants = 124; studies = 2; I2 = 21%). Risk of bias domains were low or not clearly reported in most studies while heterogeneity was substantial in most pooled outcomes. Route of administration and age were identified to be plausible source of heterogeneity for certain outcomes. Medicinal plants appear to be well tolerated up to 8 weeks of use. Clear beneficial evidence of medicinal plants for allergic rhinitis is still lacking. There is a need for improved reporting of herbal trials to allow for critical assessment of the effects of each individual medicinal plant preparation in well-designed future clinical studies.
    Matched MeSH terms: Plants, Medicinal*
  12. Jana S, Gayen S, Gupta BD, Singha S, Mondal J, Kar A, et al.
    PMID: 37691221 DOI: 10.2174/1871530323666230907115818
    BACKGROUND: The medicinal plants of the Cucurbitaceae family, such as Solena heterophylla Lour. fruits, have significant ethnobotanical value and are readily accessible in North East India.

    AIMS: We conducted a study on Solena heterophylla Lour. fruits to evaluate their anti-diabetic activity in vivo, standardize their HPTLC, and profile their metabolites using LC-QTOF-MS. We aimed to explore the molecular mechanism behind their effects on oxidative stress and glycosylated hemoglobin (HbA1c).

    METHODS: Firstly, the ethyl acetate fraction of Solena heterophylla Lour. fruits was standardized using Cucurbitacin B as a standard marker by conducting HPTLC evaluation. Next, we delved into analyzing metabolite profiling. In addition, the standardized fraction was utilized in an experimental study to investigate the molecular mechanism of action in an in vivo high-fat diet and a low dose of streptozotocin-induced diabetic model.

    RESULTS: We have reportedly identified 52 metabolites in the ethyl acetate fraction of Solena heterophylla (EASH). In the in vitro tests, it has been observed that this extract from plants possesses notable inhibitory properties against α-amylase and α-glucosidase. Solena heterophylla fruits with high levels of Cucurbitacin B (2.29% w/w) helped lower FBG levels in animals with EASH treatment. EASH treatment reduced HbA1c levels and normalized liver lipid peroxidation and antioxidant enzyme levels. SGOT, SGPT, and SALP serum enzyme levels also returned to normal.

    CONCLUSION: Based on the current evaluation, it was found that EASH exhibited encouraging hypoglycemic effects in diabetic rats induced by a low dose of STZ and high-fat diet, which warrants further investigation.

    Matched MeSH terms: Plants, Edible
  13. Yasunaga T, Wolski A, Taszakowski A
    Zootaxa, 2023 Dec 07;5382(1):152-169.
    PMID: 38221267 DOI: 10.11646/zootaxa.5382.1.17
    Three new species of the fungal-inhabiting plant bug genus Punctifulvius Schmitz, 1978 (Cylapinae: Fulviini) are described, namely P. aleksanderi n. sp. from Selangor, Malaysia, P. parvus n. sp. from East Kalimantan, Indonesia, and P. sakaerat n. sp. from Nakhon Ratchasima, Thailand. The present discovery represents the first record of the genus from the Oriental Region. Punctifulvius members are now confirmed to be widespread from the cold temperate climatic zones in the eastern Palearctic regions, across the tropics of the Oriental Region, to the temperate rainforest of Australia. Punctifulvius kerzhneri Schmitz, 1978 is recorded from Taiwan for the first time. The systematic position of Teratofulvioides Carvalho & Lorenzato, 1978 is discussed, and its single species Teratofulvioides punctatus Carvalho & Lorenzato, 1978 is redescribed. Color adult habitus images of Punctifulvius aleksanderi, P. kerzhneri, P. parvus, P. sakaerat, and Teratofulvius punctatus, images of male (P. parvus and P. sakaerat) and female (P. aleksanderi) genitalic structures, as well as scanning electron micrographs of selected structures of P. aleksanderi, P. kerzhneri, P. parvus, P. sakaerat, and T. punctatus are provided. Key to the species of Punctifulvius is given.
    Matched MeSH terms: Plants
  14. Han L, Gu H, Lu W, Li H, Peng WX, Ling Ma N, et al.
    Chemosphere, 2023 Dec;344:140307.
    PMID: 37769918 DOI: 10.1016/j.chemosphere.2023.140307
    As chromium (Cr) in ecosystems affects human health through food chain exposure, phytoremediation is an environmentally friendly and efficient way to reduce chromium pollution in the environment. Here, we review the mechanism of absorption, translocation, storage, detoxification, and regulation of Cr in plants. The Cr(VI) form is more soluble, mobile, and toxic than Cr(III), reflecting how various valence states of Cr affect environmental risk characteristics, physicochemical properties, toxicity, and plant uptake. Plant root's response to Cr exposure leads to reactive oxygen species (ROS) generation and apoptosis. Cell wall immobilization, vacuole compartmentation, interaction of defense proteins and organic ligand with Cr, and removal of reactive oxygen species by antioxidants continue plant life. In addition, the combined application of microorganisms, genetic engineering, and the addition of organic acids, nanoparticles, fertilization, soil amendments, and other metals could accelerate the phytoremediation process. This review provides efficient methods to investigate and understand the complex changes of Cr metabolism in plants. Preferably, fast-growing, abundantly available biomass species should be modified to mitigate Cr pollution in the environment as these green and efficient remediation technologies are necessary for the protection of soil and water ecology.
    Matched MeSH terms: Plants/metabolism
  15. Zakaria Z, Othman ZA, Nna VU, Mohamed M
    Arch Physiol Biochem, 2023 Dec;129(6):1262-1278.
    PMID: 34153200 DOI: 10.1080/13813455.2021.1939387
    Imbalance in hepatic lipid metabolism can lead to an abnormal triglycerides deposition in the hepatocytes which can cause non-alcoholic fatty liver disease (NAFLD). Four main mechanisms responsible for regulating hepatic lipid metabolism are fatty acid uptake, de novo lipogenesis, lipolysis and fatty acid oxidation. Controlling the expression of transcription factors at molecular level plays a crucial role in NAFLD management. This paper reviews various medicinal plants and their bioactive compounds emphasising mechanisms involved in hepatic lipid metabolism, other important NAFLD pathological features, and their promising roles in managing NAFLD through regulating key transcription factors. Although there are many medicinal plants popularly investigated for NAFLD treatment, there is still little information and scientific evidence available and there has been no research on clinical trials scrutinised on this matter. This review also aims to provide molecular information of medicinal plants in NALFD treatment that might have potentials for future scientifically controlled studies.
    Matched MeSH terms: Plants, Medicinal*
  16. Nett RS, Dho Y, Tsai C, Passow D, Martinez Grundman J, Low YY, et al.
    Nature, 2023 Dec;624(7990):182-191.
    PMID: 37938780 DOI: 10.1038/s41586-023-06716-y
    Plants synthesize numerous alkaloids that mimic animal neurotransmitters1. The diversity of alkaloid structures is achieved through the generation and tailoring of unique carbon scaffolds2,3, yet many neuroactive alkaloids belong to a scaffold class for which no biosynthetic route or enzyme catalyst is known. By studying highly coordinated, tissue-specific gene expression in plants that produce neuroactive Lycopodium alkaloids4, we identified an unexpected enzyme class for alkaloid biosynthesis: neofunctionalized α-carbonic anhydrases (CAHs). We show that three CAH-like (CAL) proteins are required in the biosynthetic route to a key precursor of the Lycopodium alkaloids by catalysing a stereospecific Mannich-like condensation and subsequent bicyclic scaffold generation. Also, we describe a series of scaffold tailoring steps that generate the optimized acetylcholinesterase inhibition activity of huperzine A5. Our findings suggest a broader involvement of CAH-like enzymes in specialized metabolism and demonstrate how successive scaffold tailoring can drive potency against a neurological protein target.
    Matched MeSH terms: Plants/metabolism
  17. Alhusayni S, Roswanjaya YP, Rutten L, Huisman R, Bertram S, Sharma T, et al.
    BMC Plant Biol, 2023 Nov 24;23(1):587.
    PMID: 37996841 DOI: 10.1186/s12870-023-04594-0
    BACKGROUND: Nitrogen-fixing nodules occur in ten related taxonomic lineages interspersed with lineages of non-nodulating plant species. Nodules result from an endosymbiosis between plants and diazotrophic bacteria; rhizobia in the case of legumes and Parasponia and Frankia in the case of actinorhizal species. Nodulating plants share a conserved set of symbiosis genes, whereas related non-nodulating sister species show pseudogenization of several key nodulation-specific genes. Signalling and cellular mechanisms critical for nodulation have been co-opted from the more ancient plant-fungal arbuscular endomycorrhizal symbiosis. Studies in legumes and actinorhizal plants uncovered a key component in symbiotic signalling, the LRR-type SYMBIOSIS RECEPTOR KINASE (SYMRK). SYMRK is essential for nodulation and arbuscular endomycorrhizal symbiosis. To our surprise, however, despite its arbuscular endomycorrhizal symbiosis capacities, we observed a seemingly critical mutation in a donor splice site in the SYMRK gene of Trema orientalis, the non-nodulating sister species of Parasponia. This led us to investigate the symbiotic functioning of SYMRK in the Trema-Parasponia lineage and to address the question of to what extent a single nucleotide polymorphism in a donor splice site affects the symbiotic functioning of SYMRK.

    RESULTS: We show that SYMRK is essential for nodulation and endomycorrhization in Parasponia andersonii. Subsequently, it is revealed that the 5'-intron donor splice site of SYMRK intron 12 is variable and, in most dicotyledon species, doesn't contain the canonical dinucleotide 'GT' signature but the much less common motif 'GC'. Strikingly, in T. orientalis, this motif is converted into a rare non-canonical 5'-intron donor splice site 'GA'. This SYMRK allele, however, is fully functional and spreads in the T. orientalis population of Malaysian Borneo. A further investigation into the occurrence of the non-canonical GA-AG splice sites confirmed that these are extremely rare.

    CONCLUSION: SYMRK functioning is highly conserved in legumes, actinorhizal plants, and Parasponia. The gene possesses a non-common 5'-intron GC donor splice site in intron 12, which is converted into a GA in T. orientalis accessions of Malaysian Borneo. The discovery of this functional GA-AG splice site in SYMRK highlights a gap in our understanding of splice donor sites.

    Matched MeSH terms: Plants/metabolism
  18. Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, et al.
    Environ Pollut, 2023 Nov 01;336:122417.
    PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417
    Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
    Matched MeSH terms: Plants
  19. Tamizi AA, Md-Yusof AA, Mohd-Zim NA, Nazaruddin NH, Sekeli R, Zainuddin Z, et al.
    Mol Biol Rep, 2023 Nov;50(11):9353-9366.
    PMID: 37819494 DOI: 10.1007/s11033-023-08842-2
    BACKGROUND: Agrobacterium-mediated transformation and particle bombardment are the two common approaches for genome editing in plant species using CRISPR/Cas9 system. Both methods require careful manipulations of undifferentiated cells and tissue culture to regenerate the potentially edited plants. However, tissue culture techniques are laborious and time-consuming.

    METHODS AND RESULTS: In this study, we have developed a simplified, tissue culture-independent protocol to deliver the CRISPR/Cas9 system through in planta transformation in Malaysian rice (Oryza sativa L. subsp. indica cv. MR 219). Sprouting seeds with cut coleoptile were used as the target for the infiltration by Agrobacterium tumefaciens and we achieved 9% transformation efficiency. In brief, the dehusked seeds were surface-sterilised and imbibed, and the coleoptile was cut to expose the apical meristem. Subsequently, the cut coleoptile was inoculated with A. tumefaciens strain EHA105 harbouring CRISPR/Cas9 expression vector. The co-cultivation was conducted for five to six days in a dark room (25 ± 2 °C) followed by rooting, acclimatisation, and growing phases. Two-month-old plant leaves were then subjected to a hygromycin selection, and hygromycin-resistant plants were identified as putative transformants. Further validation through the polymerase chain reaction verified the integration of the Cas9 gene in four putative T0 lines. During the fruiting stage, it was confirmed that the Cas9 gene was still present in three randomly selected tillers from two 4-month-old transformed plants.

    CONCLUSION: This protocol provides a rapid method for editing the rice genome, bypassing the need for tissue culture. This article is the first to report the delivery of the CRISPR/Cas9 system for in planta transformation in rice.

    Matched MeSH terms: Plants, Genetically Modified/genetics
  20. Delavaux CS, LaManna JA, Myers JA, Phillips RP, Aguilar S, Allen D, et al.
    Commun Biol, 2023 Oct 19;6(1):1066.
    PMID: 37857800 DOI: 10.1038/s42003-023-05410-z
    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.
    Matched MeSH terms: Plants/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links