Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Riyanto, Jumat Salimon, Mohamed Rozali Othman
    Sains Malaysiana, 2007;36:175-181.
    Elektrod platinum-polivinilklorida (Pt-PVC) untuk pengoksidaan elektrokimia etanol dalam larutan alkali telah direkabentuk. Elektrod Pt-PVC dibina dengan mencampurkan serbuk-serbuk logam platinum dengan PVC (95:5 w/w), diaduk untuk mendapatkan campuran yang homogen, ditambahkan dengan tetrahidrofuran (THF) untuk melarutkan PVC, dikeringkan, dimasukkan ke dalam acuan berdiameter 1 cm dan ditekan pada tekanan kira-kira 10 tan/cm2. Kajian elektrokimia dilakukan menggunakan voltammetri kitaran (CV) dan kronokoulometri (CC). CV untuk etanol yang menggunakan elektrod-elektrod kepingan logam Pt dan Pt-PVC masing-masing memberikan ketumpatan arus 0.25 mA/cm2 dan 85 mA/cm2 untuk puncak penjerapan hidroksida. Ini menunjukkan bahawa elektrod Pt-PVC mempunyai nilai konduktiviti dan perilaku elektrokimia yang lebih baik untuk pengoksidaan etanol dalam KOH berbanding elektrod kepingan logam Pt. Hasil kajian mendapati bahawa terdapat peningkatan peratus hasil elektrolisis dari 3.64% kepada 23.64% asid asetik apabila elektrod Pt-PVC digunakan untuk pengoksidaan elektrokimia 0.25 M etanol dalam larutan elektrolit 1.0 M KOH menggantikan elektrod kepingan logam Pt.
    Matched MeSH terms: Platinum
  2. Araoyinbo AO, Ahmad Fauzi M, Sreekantan S, Azizan Aziz
    The formation of nano pores on aluminum at 30oC- 38oC, employing a one step anodization technique which does not require removing the oxide layer formed is presented. A 20% phosphoric acid electrolyte (concentration higher than the normal anodization concentration of 5 to 10%) at a cell potential of 60 volts was used. A platinum electrode was used as the cathode electrode while the aluminum substrate as the anode electrode. A dc powered electrochemical cell to provide the required amount of current density (without the use of temperature controlled water bath) suitable or necessary for pore formation at room temperature was employed. The results obtained show that pore formation at room temperature is achievable and the pore diameter ranged between 80-120 nm.
    Matched MeSH terms: Platinum
  3. Zain ZM, O'Neill RD, Lowry JP, Pierce KW, Tricklebank M, Dewa A, et al.
    Biosens Bioelectron, 2010 Feb 15;25(6):1454-9.
    PMID: 19945264 DOI: 10.1016/j.bios.2009.10.049
    D-serine has been implicated as a brain messenger, promoting not only neuronal signalling but also synaptic plasticity. Thus, a sensitive tool for D-serine monitoring in brain is required to understand the mechanisms of D-serine release from glia cells. A biosensor for direct fixed potential amperometric monitoring of D-serine incorporating mammalian D-amino acid oxidase (DAAO) immobilized on a Nafion coated poly-ortho-phenylenediamine (PPD) modified Pt-Ir disk electrode was therefore developed. The combined layers of PPD and Nafion enhanced the enzyme activity and biosensor efficiency by approximately 2-fold compared with each individual layer. A steady state response time (t(90%)) of 0.7+/-0.1s (n=8) and limit of detection 20+/-1 nM (n=8) were obtained. Cylindrical geometry showed lower sensitivity compared to disk geometry (61+/-7 microA cm(-2) mM(-1), (n=4), R(2)=0.999). Interference by ascorbic acid (AA), the main interference species in the central nervous system and other neurochemical electroactive molecules was negligible. Implantation of the electrode and microinjection of D-serine into rat brain striatal extracellular fluid demonstrated that the electrode was capable of detecting D-serine in brain tissue in vivo.
    Matched MeSH terms: Platinum/chemistry
  4. Low PL, Yong BE, Ong BH, Matsumoto M, Tou TY
    J Nanosci Nanotechnol, 2011 Mar;11(3):2640-3.
    PMID: 21449444
    The substrate effects on surface morphologies, crystal structures, and magnetic properties of the sputter-deposited FePt thin films on Corning 1737, normal glass, and Si wafer substrates, respectively, were investigated. High in-plane coercivities of 10 kOe were obtained for the air-annealed films on Corning 1737 and Si wafer, where both films similarly have granular-like morphologies. Besides, increasing grain size and surface roughness of all the FePt films with the post-anneal temperature were observed. Moreover, partially separated grains were seen in the film on Si wafer, where the formation of Fe silicides during post-anneal is suspected, in which has enhanced the magnetic ordering.
    Matched MeSH terms: Platinum/chemistry*
  5. Shahrokh Abadi MH, Hamidon MN, Shaari AH, Abdullah N, Wagiran R
    Sensors (Basel), 2011;11(8):7724-35.
    PMID: 22164041 DOI: 10.3390/s110807724
    A gas sensor array was developed in a 10 × 10 mm(2) space using Screen Printing and Pulse Laser Ablation Deposition (PLAD) techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO(2) and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.7 J/s, at different deposition times of 2, 5 and 10 min, in an atmosphere containing 0.04 mbar (4 kPa) of O(2). A range of spectroscopic diffraction and real space imaging techniques, SEM, EDX, XRD, and AFM were used in order to characterize the surface morphology, structure, and composition of the films. Measurement on the array shows sensitivity to some solvent and wood smoke can be achieved with short response and recovery times.
    Matched MeSH terms: Platinum/chemistry
  6. Durairaj, R., Leong, K.C., Chia Wea, L., Wong, M.C.
    ASM Science Journal, 2011;5(2):109-114.
    MyJurnal
    Lead-free solder paste printing processes account for the majority of assembly defects in the electronic manufacturing industry. In the stencil printing process, the solder paste must be able to withstand low and high shear rates which result in continuous structural breakdown and build-up. This study investigated the effect of the addition of nickel and platinum powders to the thixotropic behaviour of lead-free Sn/Ag/Cu solder pastes using the structural kinetic model. A hysteresis loop test and constant shear test were utilized to investigate the thixotropic behaviour of the pastes using parallel plate rheometry at 25ºC. In this study, the shear rates were increased from 0.01 s–1 to 10 s–1 and the second curve was a result of decreasing the shear rate from 10 s–1 to 0.01 s–1. For the constant shear test, the samples were subjected to five different shear rates of 0.01s–1, 0.1s–1, 1s–1, 10s–1 and 100s–1. The constant shear rate test was designed to study the structural breakdown and build-up of the paste materials. From this investigation, the hysteresis loop test was shown to be an effective test method to differentiate the extent of structural recovery in the solder pastes. All the pastes showed a high degree of shear thinning behaviour with time. This might be due to the agglomeration of particles in the flux that prohibited paste flow under low shear rate. The action of high shear rate would break the agglomerates into smaller pieces which facilitated the flow of pastes, thus viscosity was reduced at high shear rate.
    Matched MeSH terms: Platinum
  7. Ashkan Shafiee, Muhamad Mat Salleh, Muhammad Yahaya
    HOMO and LUMO of organic compounds are basic parameters for the design and fabrication of an organic solar cell. This paper presents a technique to obtain HOMO and LUMO of an n-type polymer of [6,6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) and a p-type polymer of poly (3-octyl-thiophene-2, 5-diyl) (P3OT). The energy of band gap for each material has been calculated using optical absorption spectrum. Cyclic Voltammetry was used to estimate the oxidation potential and energy band diagram consequently. The experiments were carried out in a three-electrode cell consisting of a platinum working electrode, a platinum counter electrode and a SCE reference electrode. P3OT showed energy band gap equal to 1.83 eV with HOMO and LUMO equal to 5.59 eV and 3.76 eV, respectively. PCBE showed energy band gap equal to 1.96 eV with HOMO and LUMO equal to 5.87 eV and 3.91 eV, respectively. Based on energy band diagram that was constructed from this experimental result, the couple materials may be successfully used to fabricate the feasible organic solar cells.
    Matched MeSH terms: Platinum
  8. Gharibshahi E, Saion E
    Int J Mol Sci, 2012;13(11):14723-41.
    PMID: 23203091 DOI: 10.3390/ijms131114723
    Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.
    Matched MeSH terms: Platinum/chemistry*
  9. Sobri, M.A., Noorakmal, A., Razali, R.
    MyJurnal
    Saccular aneurysms associated with moyamoya disease are commonly located in the vertebrobasilar circulation. Anterior circulation aneurysm associated with moyamoya disease is uncommon and is usually treated by neurosurgical clipping. Objective: We report a succesful treatment using the endovascular approach in a case of ruptured anterior communicating artery aneurysm in unilateral moyamoya disease. Clinical Presentation: A 23 year old man presented with a 5 day history of headache, diplopia and fever. Computed Tomography (CT) scan and cerebral angiogram showed a bilobed anterior comunicating artery aneurysm. There was also severe M1 segment stenosis of the left middle cerebral artery with multiple collaterals, representing moyamoya vessels. Intervention: Treatment was done under general anesthesia and followed the standard practice for endovascular treatment. The aneurysm was occluded with three detachable platinum microcoils (Microplex®, Microvention®). Conclusion: Endovascular treatment can be a treatment option for ruptured anterior circulation saccular aneurysms associated with moyamoya disease.
    Matched MeSH terms: Platinum
  10. Abu Bakar NH, Abu Bakar M, Bettahar MM, Ismail J, Monteverdi S
    J Nanosci Nanotechnol, 2013 Jul;13(7):5034-43.
    PMID: 23901527
    A detailed study on the surface properties of oleic acid-stabilized PtNi nanoparticles supported on silica is reported. The oleic acid-stabilized PtNi nanoparticles were synthesized using NaBH4 as the reducing agent at various temperatures and oleic acid concentrations, prior to incorporation onto the silica support. X-ray diffraction studies of the unsupported oleic acid-stabilized PtNi particles revealed that the PtNi existed as alloys. Upon incorporation onto silica support, surface properties of the catalysts were investigated using H2-temperature reduction (H2-TPR), H2-temperature desorption (H2-TPD) and H2-chemisorption techniques. It was found that for the bimetallic catalysts, no oxides or very little oxidation occurred. Furthermore, these catalysts exhibited both Pt and Ni active sites on its surface though the availability of Ni active sites was dominant. A comparison of the surface properties of these materials with those prepared without oleic acid in our previous work [N. H. H. Abu Bakar et al., J. Catal. 265, 63 (2009)] and how they affect the hydrogenation of benzene is also discussed.
    Matched MeSH terms: Platinum/chemistry*
  11. Ali, A.H.M., Sobri, S., Salmiaton, A., Faizah, M.Y.
    MyJurnal
    The process of etching is the most crucial part of the work of manufacturing printed circuit boards (PCB). In the etching process by nitric acid, a spent etching waste solution of composition 250 g/L HNO3, 30-40 g/L Cu, 30-40 g/L Sn, 30-40 g/L Pb and 20-25 g/L Fe is produced. High metal concentrations in the spent etching waste solution make it a viable candidate for the recovery of metals. Recovery of metals from spent etching waste solution is a significant concern as the recent growth in production of printed circuit boards has generated a drastic increase of spent etching waste solution each year. This study concerns itself with the recovery of metals from spent etching waste. In this study a dilution was made in order to increase the pH of the solution as spent etching waste solution has high acidity, and the electrowinning method was performed to recover metals from the spent etching waste solution. Glassy carbon and platinum were used as cathode and anode in order to investigate the electrodeposition of metals and cyclic voltammetry investigation suggests that the deposition of metals on glassy carbon electrodes occurs at four different overpotentials mainly at -0.15 V, -0.35 V, -0.45 V and -0.75 V. Microscopy observation demonstrates that there is a deposition of metals by applying the potentials in a set of current-time transient study for a duration of 60 seconds and the metals recovered formed as aggregates.
    Matched MeSH terms: Platinum
  12. Shafiee, M.N., Omar, M.H., Suraya, A., Hatta, M.
    MyJurnal
    Platinum based adjuvant chemotherapy is generally recommended for ovarian cancer to improve the survival rate. Intravenous route is commonly used, easily administered and less associated complications. However, intraperitoneal route is gaining its popularity as a single procedure or adjunctive to the intravenous route. Numerous questions on its eligibility and safety are still perplexed. A case review on a patient with non optimal debulking surgery of advanced ovarian cancer was studied. Intravenous platinum based chemotherapy combined with paclitaxel failed to bring her to clinical remission. Second line chemotherapy, gemcitabin rendered her to poor response with unresolved debilitating ascites needing recurrent drainage. Surprisingly, a trial of intraperitoneal chemotherapy with cisplatin revealed a great response with a complete clinical remission.
    Matched MeSH terms: Platinum
  13. Ghanim MH, Najimudin N, Ibrahim K, Abdullah MZ
    IET Nanobiotechnol, 2014 Jun;8(2):77-82.
    PMID: 25014078 DOI: 10.1049/iet-nbt.2012.0044
    Miniaturisation of microchip capillary electrophoresis (MCE) is becoming an increasingly important research topic, particularly in areas related to micro total analysis systems or lab on a chip. One of the important features associated with the miniaturised MCE system is the portable power supply unit. In this work, a very low electric field MCE utilising an amperometric detection scheme was designed for use in DNA separation. The device was fabricated from a glass/polydimethylsiloxane hybrid engraved microchannel with platinum electrodes sputtered onto a glass substrate. Measurement was based on a three-electrode arrangement, and separation was achieved using a very low electric field of 12 V/cm and sample volume of 1.5 µl. The device was tested using two commercial DNA markers of different base pair sizes. The results are in agreement with conventional electrophoresis, but with improved resolution. The sensitivity consistently higher than 100 nA, and the separation time approximately 45 min, making this microchip an ideal tool for DNA analysis.
    Matched MeSH terms: Platinum/chemistry
  14. Lim SP, Pandikumar A, Lim YS, Huang NM, Lim HN
    Sci Rep, 2014;4:5305.
    PMID: 24930387 DOI: 10.1038/srep05305
    This paper reports a rapid and in-situ electrochemical polymerization method for the fabrication of polypyrrole nanoparticles incorporated reduced graphene oxide (rGO@PPy) nanocomposites on a ITO conducting glass and its application as a counter electrode for platinum-free dye-sensitized solar cell (DSSC). The scanning electron microscopic images show the uniform distribution of PPy nanoparticles with diameter ranges between 20 and 30 nm on the rGO sheets. The electrochemical studies reveal that the rGO@PPy has smaller charge transfer resistance and similar electrocatalytic activity as that of the standard Pt counter electrode for the I₃(-)/I(-) redox reaction. The overall solar to electrical energy conversion efficiency of the DSSC with the rGO@PPy counter electrode is 2.21%, which is merely equal to the efficiency of DSSC with sputtered Pt counter electrode (2.19%). The excellent photovoltaic performance, rapid and simple fabrication method and low-cost of the rGO@PPy can be potentially exploited as a alternative counter electrode to the expensive Pt in DSSCs.
    Matched MeSH terms: Platinum
  15. Bakar, M. S. A., Ahmad, S., Muchtar, A., Rahman, H. A .
    MyJurnal
    Solid oxide fuel cells (SOFC) are efficient and clean power generation devices. Lowtemperature
    SOFC (LTSOFC) has been developed since high-temperature SOFC (HTSOFC) is not
    feasible to be commercialized due to cost. Lowering the operation temperature reduces its substantial
    performance resulting from cathode polarization resistance and overpotential of cathode. The
    development of composite cathodes regarding mixed ionic-electronic conductor (MIEC) and ceriabased
    materials for LTSOFC minimizes the problems significantly and leads to an increase in
    electrocatalytic activity for the occurrence of oxygen reduction reaction (ORR). Lanthanum-based
    materials such as lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ) have been discovered
    recently, which offer great compatibility with ceria-based electrolyte to be applied as composite
    cathode materials for LTSOFC. Cell performance at lower operating temperature can be maintained
    and further improved by enhancing the ORR. This paper reviews recent development of various ceriabased
    composite cathodes especially related to the ceria-carbonate composite electrolytes for
    LTSOFC. The influence of the addition of metallic elements such as silver (Ag), platinum (Pt) and
    palladium (Pd) towards the electrochemical properties and performance of LSCF composite cathodes
    are also discussed.
    Matched MeSH terms: Platinum
  16. Lee WH, Lai CW, Hamid SBA
    Materials (Basel), 2015 Aug 28;8(9):5702-5714.
    PMID: 28793530 DOI: 10.3390/ma8095270
    WO₃-decorated TiO₂ nanotube arrays were successfully synthesized using an in situ anodization method in ethylene glycol electrolyte with dissolved H₂O₂ and ammonium fluoride in amounts ranging from 0 to 0.5 wt %. Anodization was carried out at a voltage of 40 V for a duration of 60 min. By using the less stable tungsten as the cathode material instead of the conventionally used platinum electrode, tungsten will form dissolved ions (W(6+)) in the electrolyte which will then move toward the titanium foil and form a coherent deposit on the titanium foil. The fluoride ion content was controlled to determine the optimum chemical dissolution rate of TiO₂ during anodization to produce a uniform nanotubular structure of TiO₂ film. Nanotube arrays were then characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the FESEM images obtained, nanotube arrays with an average pore diameter of up to 65 nm and a length of 1.8 µm were produced. The tungsten element in the samples was confirmed by EDAX results which showed varying tungsten content from 0.22 to 2.30 at%. XRD and Raman results showed the anatase phase of TiO₂ after calcination at 400 °C for 4 h in air atmosphere. The mercury removal efficiency of the nanotube arrays was investigated by photoirradiating samples dipped in mercury chloride solution with TUV (Tube ultraviolet) 96W UV-B Germicidal light. The nanotubes with the highest aspect ratio (15.9) and geometric surface area factor (92.0) exhibited the best mercury removal performance due to a larger active surface area, which enables more Hg(2+) to adsorb onto the catalyst surface to undergo reduction to Hg⁰. The incorporation of WO₃ species onto TiO₂ nanotubes also improved the mercury removal performance due to improved charge separation and decreased charge carrier recombination because of the charge transfer from the conduction band of TiO₂ to the conduction band of WO₃.
    Matched MeSH terms: Platinum
  17. Yunusa Z, Hamidon MN, Ismail A, Mohd Isa M, Yaacob MH, Rahmanian S, et al.
    Sensors (Basel), 2015;15(3):4749-65.
    PMID: 25730480 DOI: 10.3390/s150304749
    A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%.
    Matched MeSH terms: Platinum
  18. Jalifah binti Latip, Daniel Chong Jun Weng, Siti Aishah binti Hasbullah, Harjono Sastrohamidjojo
    Sains Malaysiana, 2015;44:1183-1188.
    Rhodinol is a mixture of geraniol and citronellol. It is the second fraction in fractional distillation of commercially grown Cymbopogon nardus. The physical and chemical similarities of these two compounds made them inseparable. The individual use of each compound is of great importance. A selective oxidation (hydrogen peroxide activated by platinum black) of geraniol (in rhodinol) to geranial was done while remaining citronellol intact in order to separate the two compounds into different chemical functionality. A yield of 81% geranial achieved while minimizing citronellal formation from citronellol to 17%. Chemical separation using sodium hydrogen sulfite (NaHSO3) was done to separate the aldehydes from the unreacted citronellol. Purification using fractional distillation was done to obtain pure geraniol and remove minor fraction of citronellal.
    Matched MeSH terms: Platinum
  19. Zhang X, Wu X, Centeno A, Ryan MP, Alford NM, Riley DJ, et al.
    Sci Rep, 2016;6:23364.
    PMID: 26997140 DOI: 10.1038/srep23364
    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.
    Matched MeSH terms: Platinum
  20. Subramanian P, Jayapalan JJ, Abdul-Rahman PS, Arumugam M, Hashim OH
    PeerJ, 2016;4:e2080.
    PMID: 27257555 DOI: 10.7717/peerj.2080
    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock.
    Matched MeSH terms: Platinum
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links