Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Chin YX, Mi Y, Cao WX, Lim PE, Xue CH, Tang QJ
    Nutrients, 2019 May 21;11(5).
    PMID: 31117266 DOI: 10.3390/nu11051133
    Kappaphycus is a commercially important edible red alga widely cultivated for carrageenan production. Here, we aimed to investigate the anti-obesity mechanism of Kappaphycusalvarezii by comparing the effects of whole seaweed (T), extracted native κ-carrageenan (CGN), and the leftover fraction sans-carrageenan (SCGN) supplementations (5%, w/w) on diet-induced obese C57BL/6J mice. A high-fat diet induced both a raised body fat percentage and serum cholesterol level, increased adipocytes size, abnormal levels of adipocytokines, and promoted gut dysbiosis. Our results showed that, overall, both CGN and SCGN were more effective in reversing obesity and related metabolic syndromes to normal levels than T. Furthermore, these findings suggested that CGN- and SCGN-modulated gut dysbiosis induced by a high-fat diet, which may play an influencing role in adiponectin dysregulation. Our data also showed some evidence that CGN and SCGN have distinct effects on selected genes involved in lipid metabolism. In conclusion, both κ-carrageenan and SCGN have novel anti-obesity potential with possible different mechanisms of action.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology*; Anti-Obesity Agents/chemistry
  2. Gooda Sahib Jambocus N, Saari N, Ismail A, Khatib A, Mahomoodally MF, Abdul Hamid A
    J Diabetes Res, 2016;2016:2391592.
    PMID: 26798649 DOI: 10.1155/2016/2391592
    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a (1)H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment.
    Matched MeSH terms: Anti-Obesity Agents/isolation & purification; Anti-Obesity Agents/pharmacology*
  3. Aabideen ZU, Mumtaz MW, Akhtar MT, Mukhtar H, Raza SA, Touqeer T, et al.
    Molecules, 2020 Oct 26;25(21).
    PMID: 33114490 DOI: 10.3390/molecules25214935
    The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.
    Matched MeSH terms: Anti-Obesity Agents/metabolism; Anti-Obesity Agents/pharmacology*; Anti-Obesity Agents/therapeutic use
  4. Karupiah S, Ismail Z
    AAPS PharmSciTech, 2015 Jun;16(3):548-53.
    PMID: 25374344 DOI: 10.1208/s12249-014-0245-1
    Obesity is one of the major public health problems worldwide and it is generally associated with many diseases. Although synthetic drugs are available for the treatment of obesity, herbal remedies may provide safe, natural, and cost-effective alternative to synthetic drugs. One example of such drugs is Melastoma malabathricum var Alba Linn (MM). Although several studies have been reported for the pharmacological activities of MM, there is no report on the anti-obesity effect of MM. The aim of the present study is to evaluate the anti-obesity potential of methanolic extract of MM. The anti-obesity effect of MM on rats fed with a high-fat diet was investigated through determination of the changes in body weight, fat weight, organ weights, and blood biochemicals. The animals in this study were divided into three groups: a normal group with a standard diet (N), a control group fed with high-fat diet (C), and a MM treatment group fed with high-fat (HFD + MM) diet for 8 weeks. There was no significant difference in the amount of food intake between control and HFD + MM treatments. These results also suggest that MM does not induce a dislike for the diet due to its smell or taste. The study shows that MM significantly prevented increases in body weight, cholesterol, LDL, HDL, and total lipids that resulted from the high-fat diet. MM also decreased the epididymal fat (E-fat) and retroperitoneal fat (R-fat) weights and phospholipid concentrations induced by the high-fat diet. On the basis of these findings, it was concluded that MM had anti-obesity effects by suppressing body weight gain and abdominal fat formation.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  5. Beh BK, Mohamad NE, Yeap SK, Ky H, Boo SY, Chua JYH, et al.
    Sci Rep, 2017 07 27;7(1):6664.
    PMID: 28751642 DOI: 10.1038/s41598-017-06235-7
    Recently, food-based bioactive ingredients, such as vinegar, have been proposed as a potential solution to overcome the global obesity epidemic. Although acetic acid has been identified as the main component in vinegar that contributes to its anti-obesity effect, reports have shown that vinegar produced from different starting materials possess different degrees of bioactivity. This study was performed to compare the anti-obesity and anti-inflammatory effects of synthetic acetic acid vinegar and Nipa vinegar in mice fed a high-fat diet. In this work, mice were fed a high-fat diet for 33 weeks. At the start of week 24, obese mice were orally fed synthetic acetic acid vinegar or Nipa vinegar (0.08 and 2 ml/kg BW) until the end of week 33. Mice fed a standard pellet diet served as a control. Although both synthetic acetic acid vinegar and Nipa vinegar effectively reduced food intake and body weight, a high dose of Nipa vinegar more effectively reduced lipid deposition, improved the serum lipid profile, increased adipokine expression and suppressed inflammation in the obese mice. Thus, a high dose of Nipa vinegar may potentially alleviate obesity by altering the lipid metabolism, inflammation and gut microbe composition in high-fat-diet-induced obese mice.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology
  6. Rahman HA, Sahib NG, Saari N, Abas F, Ismail A, Mumtaz MW, et al.
    BMC Complement Altern Med, 2017 Feb 22;17(1):122.
    PMID: 28228098 DOI: 10.1186/s12906-017-1640-4
    BACKGROUND: Obesity is a major health concern both in developed and developing countries. The use of herbal medicines became the subject of interest for the management of obesity due to its natural origin, cost effectiveness and minimal side effects. The present study aimed at investigating anti-obesity potential of ethanolic extract from Cosmos caudatus Kunth leaf (EECCL).

    METHODS: In this study, the rats were randomly divided into six groups i.e., (1) Normal Diet (ND); (2) Normal Diet and 175 mg/kgBW of EECCL (ND + 175 mg/kgBW); (3) Normal Diet and 350 mg/kgBW of EECCL (ND + 350 mg/kgBW); (4) High Fat Diet (HFD); (5) High Fat Diet and 175 mg/kgBW of EECCL (HFD + 175 mg/kgBW); (6) High Fat Diet and 350 mg/kgBW of EECCL (HFD + 350 mg/kgBW). The anti-obesity potential was evaluated through analyses of changes in body weight, visceral fat weight, and blood biochemicals including total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), leptin, insulin, adiponectin, ghrelin and fecal fat content. In addition, metabolite profiling of EECCL was carried out using NMR spectroscopy.

    RESULTS: Rats receiving EECCL together with HFD showed significant (p  0.05) different with those of ND rats. Other related obesity biomarkers including plasma lipid profiles, insulin, leptin, ghrelin and adiponectin levels also showed significant improvement (p anti-obesity mechanism similar to standard drug of Orlistat. The (1)H-NMR spectra of EECCL ascertained the presence of catechin, quercetin, rutin, kaempherol and chlorogenic acid in the extract.

    CONCLUSION: Conclusively, EECCL showed anti-obesity properties by inhibition of intestinal lipid absorption and modulation of adipocytes markers.

    Matched MeSH terms: Anti-Obesity Agents/isolation & purification; Anti-Obesity Agents/pharmacology*
  7. Kumar S, Alagawadi KR
    Pharm Biol, 2013 May;51(5):607-13.
    PMID: 23363068 DOI: 10.3109/13880209.2012.757327
    Context: Alpinia galanga Willd (Zingiberaceae) (AG) is a rhizomatous herb widely cultivated in shady regions of Malaysia, India, Indochina and Indonesia. It is used in southern India as a domestic remedy for the treatment of rheumatoid arthritis, cough, asthma, obesity, diabetes, etc. It was reported to have anti-obesity, hypoglycemic, hypolipidemic and antioxidant properties.

    Objective: A flavonol glycoside, galangin, was isolated from AG rhizomes. Based on its in vitro pancreatic lipase inhibitory effect, the study was further aimed to clarify whether galangin prevented obesity induced in female rats by feeding cafeteria diet (CD) for 6 weeks.

    Materials and methods: The in vitro pancreatic lipase inhibitory effect of galangin was determined by measuring the release of oleic acid from triolein. For in vivo experiments, female albino rats were fed CD with or without 50 mg/kg galangin for 6 weeks. Body weight and food intake was measured at weekly intervals. On day 42, serum lipids levels were estimated and then the weight of liver and parametrial adipose tissue (PAT) was determined. The liver lipid peroxidation and triglyceride (TG) content was also estimated.

    Results: The IC50 value of galangin for pancreatic lipase was 48.20 mg/mL. Galangin produced inhibition of increased body weight, energy intake and PAT weight induced by CD. In addition, galangin produced a significant decrease in serum lipids, liver weight, lipid peroxidation and accumulation of hepatic TGs.

    Conclusion: Galangin present in AG rhizomes produces anti-obesity effects in CD-fed rats; this may be mediated through its pancreatic lipase inhibitory, hypolipidemic and antioxidant activities.
    Matched MeSH terms: Anti-Obesity Agents/administration & dosage; Anti-Obesity Agents/isolation & purification; Anti-Obesity Agents/pharmacology*
  8. Balan D, Chan KL, Murugan D, AbuBakar S, Wong PF
    Phytother Res, 2018 Jul;32(7):1332-1345.
    PMID: 29520860 DOI: 10.1002/ptr.6065
    Bioactive compounds of Eurycoma longifolia (EL) jack were previously shown to reduce omentum fat mass and oestradiol-induced fatty uterine adhesion in rats. However, the exact role of EL on adipogenesis remains unknown. This study sought to investigate the effects of an EL standardized quassinoids-enriched fraction (SQEL) and the pure compound, eurycomanone, on adipogenesis in 3T3-L1 preadipocyte cells. 3T3-L1 cells were induced to differentiate and treated for 8 days. The treatment reduced intracellular accumulation of lipid droplets and triglycerides in the differentiating adipocytes and induced lipolysis in matured adipocytes. The expressions of adipogenic transcription factors and markers were also significantly downregulated during the early stage of differentiation. Furthermore, SQEL also suppressed body weight gain, decreased epididymal and perirenal fat pad mass and size, and reduced the accumulation of fat in the livers of C57BL/6J mice fed with normal or high-fat diet that were concurrently given 5 mg/kg and 10 mg/kg (i.p) of SQEL for 12 weeks. SQEL also improved glucose intolerance and decreased the elevated total cholesterol and triglyceride levels in these mice groups. These findings suggest that SQEL could be explored as an alternative pharmacologic agent inhibiting adipogenesis for the prevention of obesity.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology; Anti-Obesity Agents/therapeutic use*
  9. Seyedan A, Alshawsh MA, Alshagga MA, Mohamed Z
    Planta Med, 2017 May;83(8):684-692.
    PMID: 27992939 DOI: 10.1055/s-0042-121754
    The present study investigated the antiobesity and lipid lowering effects of an ethanolic extract of leaves obtained from Orthosiphon stamineus (200 and 400 mg/kg) and its major compound (rosmarinic acid, 10 mg/kg) in obese mice (C57BL/6) induced by a high-fat diet. Continuous supplementation with O. stamineus extract (200 and 400 mg/kg) for 8 weeks significantly decreased body weight gain (p 
    Matched MeSH terms: Anti-Obesity Agents/therapeutic use*
  10. Azman KF, Amom Z, Azlan A, Esa NM, Ali RM, Shah ZM, et al.
    J Nat Med, 2012 Apr;66(2):333-42.
    PMID: 21989999 DOI: 10.1007/s11418-011-0597-8
    Obesity and overweight are associated with atherosclerosis, fatty liver, hyperlipemia, diabetes mellitus, and various types of cancer. The global prevalence of overweight and obesity has reached epidemic proportions. Here, we investigated the effect of Tamarindus indica pulp aqueous extract (TIE) in diet-induced obese Sprague-Dawley rats. The animals were divided into five groups and labeled as follows: the normal control (NC) group received normal diet; the positive control (PC) group received high-fat diet; and the TIE 5, 25, and 50 groups, after the induction of obesity via a high-fat diet, received TIE at 5, 25, or 50 mg/kg orally for 10 weeks. It was observed that TIE decreased the levels of plasma total cholesterol, low-density lipoprotein (LDL), and triglyceride, and increased high-density lipoprotein (HDL), with the concomitant reduction of body weight. Moreover, TIE decreased plasma leptin and reduced fatty acid synthase (FAS) activity and enhanced the efficiency of the antioxidant defense system. TIE exhibits antiobesity effects, as indicated by a significant reduction in adipose tissue weights, as well as lowering the degree of hepatic steatosis in the obesity-induced rats. The extract possesses hepatoprotective activity, as it reversed the plasma liver enzymes level elevation prior to the high-fat diet. In conclusion, TIE improved obesity-related parameters in blood, liver, and adipose tissue in a rat model and suppressed obesity induced by a high-fat diet, possibly by regulating lipid metabolism and lowering plasma leptin and FAS levels. A dose-dependant effect of TIE is detected, where TIE at 50 mg/kg showed the most prominent effect, followed by TIE at 25 mg/kg and, subsequently, 5 mg/kg.
    Matched MeSH terms: Anti-Obesity Agents/therapeutic use*; Anti-Obesity Agents/chemistry
  11. Atangwho IJ, Egbung GE, Ahmad M, Yam MF, Asmawi MZ
    Food Chem, 2013 Dec 15;141(4):3428-34.
    PMID: 23993503 DOI: 10.1016/j.foodchem.2013.06.047
    The antioxidant and anti-diabetic properties of the sequential extracts of Vernonia amygdalina based on the chemical composition of the most effective anti-diabetic extract were studied. Using DPPH and ABTS radical scavenging as well as FRAP assays, the extracts showed a consistent dose-dependent trend of potent antioxidant activity in the following solvents: water extract>methanol extract>chloroform extract>and petroleum ether extracts. In the oral glucose tolerance test, the chloroform extract exerted the highest response (33.3%), similar to metformin (27.2%), after 2h compared to the control (50.8%, P<0.05). After a 14-day administration in diabetic rats, the chloroform extract recorded the highest blood (23.5%) and serum (21.4%) glucose-lowering effects (P<0.05). GC-MS analysis of the chloroform extract revealed high levels of linoleic acid (4.72%), α-linolenic acid (10.8%) and phytols (12.0%), as well as other compounds.
    Matched MeSH terms: Anti-Obesity Agents/administration & dosage*; Anti-Obesity Agents/isolation & purification; Anti-Obesity Agents/chemistry
  12. Ishaq M, Tran D, Wu Y, Nowak K, Deans BJ, Xin JTZ, et al.
    PMID: 33927690 DOI: 10.3389/fendo.2021.615446
    Asperuloside is an iridoid glycoside found in many medicinal plants that has produced promising anti-obesity results in animal models. In previous studies, three months of asperuloside administration reduced food intake, body weight, and adipose masses in rats consuming a high fat diet (HFD). However, the mechanisms by which asperuloside exerts its anti-obesity properties were not clarified. Here, we investigated homeostatic and nutrient-sensing mechanisms regulating food intake in mice consuming HFD. We confirmed the anti-obesity properties of asperuloside and, importantly, we identified some mechanisms that could be responsible for its therapeutic effect. Asperuloside reduced body weight and food intake in mice consuming HFD by 10.5 and 12.8% respectively, with no effect on mice eating a standard chow diet. Fasting glucose and plasma insulin were also significantly reduced. Mechanistically, asperuloside significantly reduced hypothalamic mRNA ghrelin, leptin, and pro-opiomelanocortin in mice consuming HFD. The expression of fat lingual receptors (CD36, FFAR1-4), CB1R and sweet lingual receptors (TAS1R2-3) was increased almost 2-fold by the administration of asperuloside. Our findings suggest that asperuloside might exert its therapeutic effects by altering nutrient-sensing receptors in the oral cavity as well as hypothalamic receptors involved in food intake when mice are exposed to obesogenic diets. This signaling pathway is known to influence the subtle hypothalamic equilibrium between energy homeostasis and reward-induced overeating responses. The present pre-clinical study demonstrated that targeting the gustatory system through asperuloside administration could represent a promising and effective new anti-obesity strategy.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  13. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  14. Chan SP, Chui WC, Lo KW, Huang KC, Leyesa ND, Lin WY, et al.
    Asia Pac J Public Health, 2012 Jul;24(4):641-9.
    PMID: 21490107 DOI: 10.1177/1010539511402189
    The increasing prevalence of overweight and obesity worldwide demands increased efforts in the prevention and management of obesity. This article aims to present consensus statements promoting appropriate consumer education and communication programs for weight-loss agents in Asia.
    Matched MeSH terms: Anti-Obesity Agents*
  15. Seyedan A, Mohamed Z, Alshagga MA, Koosha S, Alshawsh MA
    J Ethnopharmacol, 2019 May 23;236:173-182.
    PMID: 30851371 DOI: 10.1016/j.jep.2019.03.001
    ETHNOPHARMACOLOGICAL RELEVANCE: Cynometra cauliflora Linn. belongs to the Fabaceae family and is known locally in Malaysia as nam-nam. Traditionally, a decoction of the C. cauliflora leaves is used for treating hyperlipidemia and diabetes.

    AIM OF THE STUDY: This study aims to investigate the anti-obesity and lipid lowering effects of ethanolic extract of C. cauliflora leaves and its major compound (vitexin) in C57BL/6 obese mice induced by high-fat diet (HFD), as well as to further identify the molecular mechanism underlying this action.

    METHODS AND MATERIAL: Male C57BL/6 mice were fed with HFD (60% fat) for 16 weeks to become obese. The treatment started during the last 8 weeks of HFD feeding and the obese mice were treated with C. cauliflora leaf extract at 200 and 400 mg/kg/day, orlistat (10 mg/kg) and vitexin (10 mg/kg).

    RESULTS: The oral administration of C. cauliflora (400 and 200 mg/kg) and vitexin significantly reduced body weight, adipose tissue and liver weight and lipid accumulation in the liver compared to control HFD group. Both doses of C. cauliflora also significantly (P ≤ 0.05) decreased serum triglyceride, LDL, lipase, IL-6, peptide YY, resistin levels, hyperglycemia, hyperinsulinemia, and hyperleptinemia compared to the control HFD group. Moreover, C. cauliflora significantly up-regulated the expression of adiponectin, Glut4, Mtor, IRS-1 and InsR genes, and significantly decreased the expression of Lepr in white adipose tissue. Furthermore, C. cauliflora significantly up-regulated the expression of hypothalamus Glut4, Mtor and NF-kB genes. GC-MS analysis of C. cauliflora leaves detected the presence of phytol, vitamin E and β-sitosterol. Besides, the phytochemical evaluation of C. cauliflora leaves showed the presence of flavonoid, saponin and phenolic compounds.

    CONCLUSION: This study shows interesting outcomes of C. cauliflora against HFD-induced obesity and associated metabolic abnormalities. Therefore, the C. cauliflora extract could be a potentially effective agent for obesity management and its related metabolic disorders such as insulin resistance and hyperlipidemia.

    Matched MeSH terms: Anti-Obesity Agents/isolation & purification; Anti-Obesity Agents/therapeutic use*
  16. Uebelhack R, Bongartz U, Seibt S, Bothe G, Chong PW, De Costa P, et al.
    J Obes, 2019;2019:3412952.
    PMID: 30863632 DOI: 10.1155/2019/3412952
    Objective: This study was performed to determine the efficacy and tolerability/safety of IQP-AE-103 on body weight reduction in overweight to moderately obese adults.

    Methods: A double-blind, randomized, placebo-controlled trial involved one hundred and eight subjects (BMI between 25 and 35 kg/m2) that were randomly assigned to either the low-dose or the high-dose IQP-AE-103 group, or the placebo group. Following a 2-week run-in period, subjects received two capsules of investigational product after three daily main meals for 12 weeks. Subjects were instructed to maintain a nutritionally balanced hypocaloric diet according to the individual's energy requirement. Body weight, body fat, and waist and hip circumference were measured at baseline, and after 2, 4, 8, and 12 weeks. Subjects also rated their feelings of hunger and fullness using visual analogue scales, and food craving on a 5-point scale at the same time intervals. Blood samplings for safety laboratory parameters were taken before and at the end of the study.

    Results: After 12 weeks of intake, the high-dose IQP-AE-103 group had a significantly greater weight loss compared with the placebo (5.03 ± 2.50 kg vs. 0.98 ± 2.06 kg, respectively; p < 0.001) and the low-dose group (3.01 ± 2.19 kg; p=0.001). The high-dose group experienced a decrease in body fat of 3.15 ± 2.41 kg compared with a decrease of 0.23 ± 2.74 kg for the placebo group (p < 0.001). High-dose IQP-AE-103 also decreased the feeling of hunger in 66% subjects. A beneficial effect of IQP-AE-103 on the lipid metabolism was also demonstrated in the subgroup of subjects with baseline total cholesterol levels above 6.2 mmol/L. No side effects related to the intake of IQP-AE-103 were reported.

    Conclusions: These findings indicate that IQP-AE-103 could be an effective and safe weight loss intervention. This trial is registered with NCT03058367.

    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  17. Lim SM, Goh YM, Kuan WB, Loh SP
    Lipids Health Dis, 2014 Nov 03;13:169.
    PMID: 25367070 DOI: 10.1186/1476-511X-13-169
    BACKGROUND: This study investigated anti-obesity effects of seven different solvent (n-hexane, toluene, dicholoromethane, ethyl acetate, absolute methanol, 80% methanol and deionized water) extracts of germinated brown rice (GBR) on pancreatic lipase activity, adipogenesis and lipolysis in 3T3-L1 adipocytes.

    METHODS: GBR were extracted separately by employing different solvents with ultrasound-assisted. Pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm. Adipogenesis and lipolysis were assayed in fully differentiated 3T3-L1 adipocytes by using Oil Red O staining and glycerol release measurement.

    RESULTS: GBR extract using hexane showed the highest inhibitory effect (13.58 ± 0.860%) at concentration of 200 μg/ml followed by hexane extract at 100 μg/ml (9.98 ± 1.048%) while ethyl acetate extract showed the lowest (2.62 ± 0.677%) at concentration of 200 μg/ml on pancreatic lipase activity. Water extract at 300 μg/ml showed 61.55 ± 3.824% of Oil Red O staining material (OROSM), a marker of adipogenesis. It significantly decrease (p 

    Matched MeSH terms: Anti-Obesity Agents/pharmacology*
  18. Imam MU, Ismail M, Ithnin H, Tubesha Z, Omar AR
    Nutrients, 2013 Feb;5(2):468-77.
    PMID: 23389305 DOI: 10.3390/nu5020468
    Dysregulated metabolism is implicated in obesity and other disease conditions like type 2 diabetes mellitus and cardiovascular diseases, which are linked to abnormalities of peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ has been the focus of much research aimed at managing these diseases. Also, germinated brown rice (GBR) is known to possess antidiabetic, antiobesity and hypocholesterolemic effects. We hypothesized that GBR bioactive compounds may mediate some of the improvements in metabolic indices through PPARγ modulation. Cultured HEP-G2 cells were treated with 50 ppm and 100 ppm of extracts from GBR (GABA, ASG and oryzanol) after determination of cell viabilities using MTT assays. Results showed that all extracts upregulated the expression of the PPARγ. However, combination of all three extracts showed downregulation of the gene, suggesting that, in combination, the effects of these bioactives differ from their individual effects likely mediated through competitive inhibition of the gene. Upregulation of the gene may have therapeutic potential in diabetes mellitus and cardiovascular diseases, while its downregulation likely contributes to GBR's antiobesity effects. These potentials are worth studying further.
    Matched MeSH terms: Anti-Obesity Agents
  19. Seok Fang Oon, Meenakshii Nallappan, Mohd Shazrul Fazry Sa’ariwijaya, Nur Kartinee Kassim, Shamarina Shohaimi, Thiam Tsui Tee, et al.
    MyJurnal
    ABSTRACTS FOR INTERNATIONAL HEALTH AND MEDICAL SCIENCES CONFERENCE 2019 (IHMSC 2019). Accelerating Innovations in Translational and Precision Medicine. Held at Taylor’s University Lakeside Campus, Subang Jaya, Selangor, Malaysia. 8-9th March, 2019
    Introduction: According to the National Health and Morbidity Survey (NHMS) 2015, 47.7% of the Malaysian population are either obese or overweight. The increased obesity prevalence has caused major health problems including cardiovascular diseases and diabetes. Although several anti-obesity drugs have been developed, they are limited due to adverse side effects. Previous studies demonstrated that xanthorrhizol (XNT) reduced the levels of serum free fatty acid and triglyceride in vivo, but the detailed anti-obesity activities and its related mechanisms are yet to be reported. Thus, this study aims to evaluate its abilities to inhibit adipocyte hyperplasia and hypertrophy employing 3T3-L1 adipocytes.
    Methods: Statistical significance was established by one-way ANOVA, where p < 0.05 was considered statistically significant.
    Results: In this study, the IC50 value of XNT (98.3% purity) from Curcuma xanthorrhiza Roxb. in 3T3-L1 adipocytes was 35 ± 0.24 μg/mL. The loss of cell viability was due to 20.01 ± 2.77% of early apoptosis and 24.13 ± 2.03% of late apoptosis. XNT elicited apoptosis via up-regulation of caspase-3 and cleaved PARP-1 protein expression for 4.09-fold and 3.12-fold, respectively. Moreover, XNT decreased adipocyte differentiation for 36.13 ± 3.64% and reduced GPDH activity to 52.26 ± 4.36%. The underlying mechanism was due to impaired expression of PPARγ to 0.36-fold and FAS to 0.38-fold, respectively. On the other hand, XNT increased glycerol release by 45.37 ± 6.08% compared to control. During lipolysis, XNT up-regulated the leptin protein for 2.08-fold but down-regulated the protein level of insulin to 0.36-fold. These results indicated that XNT reduced the volume of adipocytes through modulation of leptin and insulin.
    Conclusion: To conclude, XNT exerted its anti-obesity mechanisms by suppression of adipocyte hyperplasia through induction of apoptosis and inhibition of adipogenesis whilst reduction of adipocyte hypertrophy through stimulation of lipolysis. Thus, XNT could be developed as a potential anti-obesity agent in the future.
    Matched MeSH terms: Anti-Obesity Agents
  20. Nor Hanipah Z, Nasr EC, Bucak E, Schauer PR, Aminian A, Brethauer SA, et al.
    Surg Obes Relat Dis, 2018 01;14(1):93-98.
    PMID: 29287757 DOI: 10.1016/j.soard.2017.10.002
    BACKGROUND: Some patients do not achieve optimal weight loss or regain weight after bariatric surgery. In this study, we aimed to determine the effectiveness of adjuvant weight loss medications after surgery for this group of patients.

    SETTING: An academic medical center.

    METHODS: Weight changes of patients who received weight loss medications after bariatric surgery from 2012 to 2015 at a single center were studied.

    RESULTS: Weight loss medications prescribed for 209 patients were phentermine (n = 156, 74.6%), phentermine/topiramate extended release (n = 25, 12%), lorcaserin (n = 18, 8.6%), and naltrexone slow-release/bupropion slow-release (n = 10, 4.8%). Of patients, 37% lost>5% of their total weight 1 year after pharmacotherapy was prescribed. There were significant differences in weight loss at 1 year in gastric banding versus sleeve gastrectomy patients (4.6% versus .3%, P = .02) and Roux-en-Y gastric bypass versus sleeve gastrectomy patients (2.8% versus .3%, P = .01).There was a significant positive correlation between body mass index at the start of adjuvant pharmacotherapy and total weight loss at 1 year (P = .025).

    CONCLUSION: Adjuvant weight loss medications halted weight regain in patients who underwent bariatric surgery. More than one third achieved>5% weight loss with the addition of weight loss medication. The observed response was significantly better in gastric bypass and gastric banding patients compared with sleeve gastrectomy patients. Furthermore, adjuvant pharmacotherapy was more effective in patients with higher body mass index. Given the low risk of medications compared with revisional surgery, it can be a reasonable option in the appropriate patients. Further studies are necessary to determine the optimal medication and timing of adjuvant pharmacotherapy after bariatric surgery.

    Matched MeSH terms: Anti-Obesity Agents/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links