Displaying publications 1 - 20 of 171 in total

Abstract:
Sort:
  1. Siar CH, Abbas SA
    PMID: 23601220 DOI: 10.1016/j.oooo.2013.02.013
    The aim of this study was to evaluate the expression and localization of tight junction proteins (TJPs) or claudins in the keratocystic odontogenic tumor (KCOT) and to correlate with its biological behavior.
    Matched MeSH terms: Epithelial Cells/pathology
  2. Fatimah SS, Chua K, Tan GC, Azmi TI, Tan AE, Abdul Rahman H
    Cytotherapy, 2013 Aug;15(8):1030-41.
    PMID: 23830235 DOI: 10.1016/j.jcyt.2013.05.003
    The aim of the present study was to evaluate the effects of air-liquid interface on the differentiation potential of human amnion epithelial cells (HAECs) to skin-like substitute in organotypic culture.
    Matched MeSH terms: Epithelial Cells/cytology; Epithelial Cells/metabolism*
  3. Ahmad R, Vaali-Mohammed MA, Elwatidy M, Al-Obeed O, Al-Khayal K, Eldehna WM, et al.
    Int J Mol Med, 2019 Jul 23.
    PMID: 31364730 DOI: 10.3892/ijmm.2019.4284
    The emergence of colorectal cancer in developed nations can be attributed to dietary habits, smoking, a sedentary lifestyle and obesity. Several treatment regimens are available for primary and metastatic colorectal cancer; however, these treatment options have had limited impact on cure and disease‑free survival, and novel agents need to be developed for treating colorectal cancer. Thus, the objective of this study was to explore the anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide. The compound's inhibitory effect on cell proliferation was determined using the MTT assay and the xCelligence RTDP machine. Alternations in the expression of Bcl‑2 and inhibitor of apoptosis protein families were detected by western blotting. Apoptotic marker protein expression, including cytochrome c and cleaved poly(ADP‑ribose)polymerase was measured in the cytosolic extract of cells. Apoptosis and necrosis were detected by flow cytometry and immunofluorescence. Reactive oxygen species (ROS), and activation of caspase‑3 and caspase‑7 were measured using flow cytometry. Activation of the JNK pathway was detected by western blotting. We investigated the molecular mechanism of action of the sulfonamide derivative on colorectal cancer cells and found that the compound possesses a potent anticancer effect, which is primarily exerted by inducing apoptosis and necrosis. Interestingly, this compound exhibited little antiproliferative effect against the normal colonic epithelial cell line FHC. Furthermore, our results showed that the compound could significantly increase ROS production. Apoptosis induction could be attenuated by the free oxygen radical scavenger N‑acetyl cysteine (NAC), indicating that the antiproliferative effect of this compound on colorectal cancer cells is at least partially dependent on the redox balance. In addition, JNK signaling was activated by treatment with this derivative, which led to the induction of apoptosis. On the contrary, a JNK inhibitor could suppress the cell death induced by this compound. Our findings thus suggested a novel anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide for colorectal cancer cells and may have therapeutic potential for the treatment of colorectal cancer; however, further investigation is required.
    Matched MeSH terms: Epithelial Cells
  4. Ahmad W, Khan MA, Ashraf K, Ahmad A, Daud Ali M, Ansari MN, et al.
    Front Pharmacol, 2021;12:597990.
    PMID: 33935697 DOI: 10.3389/fphar.2021.597990
    Safoof-e-Pathar phori (SPP) is an Unani poly-herbomineral formulation, which has for a long time been used as a medicine due to its antiurolithiatic activity, as per the Unani Pharmacopoeia. This powder formulation is prepared using six different plant/mineral constituents. In this study, we explored the antiurolithiatic and antioxidant potentials of SPP (at 700 and 1,000 mg/kg) in albino Wistar rats with urolithiasis induced by 0.75% ethylene glycol (EG) and 1% ammonium chloride (AC). Long-term oral toxicity studies were performed according to the Organization for Economic Co-operation and Development (OECD) guidelines for 90 days at an oral dose of 700 mg/kg of SPP. The EG urolithiatic toxicant group had significantly higher levels of urinary calcium, serum creatinine, blood urea, and tissue lipid peroxidation and significantly (p < 0.001 vs control) lower levels of urinary sodium and potassium than the normal control group. Histopathological examination revealed the presence of refractile crystals in the tubular epithelial cell and damage to proximal tubular epithelium in the toxicant group but not in the SPP treatment groups. Treatment of SPP at 700 and 1,000 mg/kg significantly (p < 0.001 vs toxicant) lowered urinary calcium, serum creatinine, blood urea, and lipid peroxidation in urolithiatic rats, 21 days after induction of urolithiasis compared to the toxicant group. A long-term oral toxicity study revealed the normal growth of animals without any significant change in hematological, hepatic, and renal parameters; there was no evidence of abnormal histology of the heart, kidney, liver, spleen, or stomach tissues. These results suggest the usefulness of SPP as an antiurolithiatic and an antioxidant agent, and long-term daily oral consumption of SPP was found to be safe in albino Wistar rats for up to 3 months. Thus, SPP may be safe for clinical use as an antiurolithiatic formulation.
    Matched MeSH terms: Epithelial Cells
  5. Rasouli M, Ahmad Z, Omar AR, Allaudin ZN
    BMC Biotechnol, 2011 Nov 03;11:99.
    PMID: 22047106 DOI: 10.1186/1472-6750-11-99
    BACKGROUND: Diabetes mellitus is a complicated disease with a pathophysiology that includes hyperinsulinemia, hyperglycemia and other metabolic impairments leading to many clinical complications. It is necessary to develop appropriate treatments to manage the disease and reduce possible acute and chronic side effects. The advent of gene therapy has generated excitement in the medical world for the possible application of gene therapy in the treatment of diabetes. The glucagon-like peptide-1 (GLP-1) promoter, which is recognised by gut L-cells, is an appealing candidate for gene therapy purposes. The specific properties of L-cells suggest that L-cells and the GLP-1 promoter would be useful for diabetes therapy approaches.

    RESULTS: In this study, L-cells were isolated from a primary intestinal cell line to create suitable target cells for insulin expression studies. The isolated cells displayed L-cell properties and were therefore used as an L-cell surrogate. Next, the isolated L-cells were transfected with the recombinant plasmid consisting of an insulin gene located downstream of the GLP-1 promoter. The secretion tests revealed that an increase in glucose concentration from 5 mM to 25 mM induced insulin gene expression in the L-cells by 2.7-fold. Furthermore, L-cells quickly responded to the glucose stimulation; the amount of insulin protein increased 2-fold in the first 30 minutes and then reached a plateau after 90 minutes.

    CONCLUSION: Our data showed that L-cells efficiently produced the mature insulin protein. In addition, the insulin protein secretion was positively regulated with glucose induction. In conclusion, GLP-1 promoter and L-cell could be potential candidates for diabetes gene therapy agents.

    Matched MeSH terms: Epithelial Cells/cytology; Epithelial Cells/drug effects; Epithelial Cells/metabolism*
  6. Ruszymah BH, Izham BA, Heikal MY, Khor SF, Fauzi MB, Aminuddin BS
    Med J Malaysia, 2011 Dec;66(5):440-2.
    PMID: 22390097 MyJurnal
    Current development in the field of tissue engineering led to the idea of repairing and regenerating the respiratory airway through in vitro reconstruction using autologous respiratory epithelial (RE). To ensure the capability of proliferation, the stem cell property of RE cells from the nasal turbinate should be evaluated. Respiratory epithelial cells from six human nasal turbinates were harvested and cultured in vitro. The gene expression of FZD-9 and BST-1 were expressed in passage 2 (P2) and passage 4 (P4). The levels of expression were not significant between both passages. The RE cells exhibit the stem cell properties, which remains even after serial passaging.
    Matched MeSH terms: Epithelial Cells/cytology*; Epithelial Cells/metabolism
  7. Jena MK, Khan FB, Ali SA, Abdullah A, Sharma AK, Yadav V, et al.
    Artif Cells Nanomed Biotechnol, 2023 Dec;51(1):491-508.
    PMID: 37694522 DOI: 10.1080/21691401.2023.2252872
    The mammary gland is a dynamic organ with various physiological processes like cellular proliferation, differentiation, and apoptosis during the pregnancy-lactation-involution cycle. It is essential to understand the molecular changes during the lactogenic differentiation of mammary epithelial cells (MECs, the milk-synthesizing cells). The MECs are organized as luminal milk-secreting cells and basal myoepithelial cells (responsible for milk ejection by contraction) that form the alveoli. The branching morphogenesis and lactogenic differentiation of the MECs prepare the gland for lactation. This process is governed by many molecular mediators including hormones, growth factors, cytokines, miRNAs, regulatory proteins, etc. Interestingly, various signalling pathways guide lactation and understanding these molecular transitions from pregnancy to lactation will help researchers design further research. Manipulation of genes responsible for milk synthesis and secretion will promote augmentation of milk yield in dairy animals. Identifying protein signatures of lactation will help develop strategies for persistent lactation and shortening the dry period in farm animals. The present review article discusses in details the physiological and molecular changes occurring during lactogenic differentiation of MECs and the associated hormones, regulatory proteins, miRNAs, and signalling pathways. An in-depth knowledge of the molecular events will aid in developing engineered cellular models for studies related to mammary gland diseases of humans and animals.
    Matched MeSH terms: Epithelial Cells*
  8. Ajdari Z, Rahman H, Shameli K, Abdullah R, Abd Ghani M, Yeap S, et al.
    Molecules, 2016 Mar 01;21(3):123.
    PMID: 26938520 DOI: 10.3390/molecules21030123
    The current study investigated the anticancer properties of gold nanoparticles (SG-stabilized AuNPs) synthesized using water extracts of the brown seaweed Sargassum glaucescens (SG). SG-stabilized AuNPs were characterized by ultraviolet-visible spectroscopy, transmission and scanning electron microscopy, and energy dispersive X-ray fluorescence spectrometry. The SG-stabilized AuNPs were stable and small at 3.65 ± 1.69 nm in size. The in vitro anticancer effect of SG-stabilized AuNPs was determined on cervical (HeLa), liver (HepG2), breast (MDA-MB-231) and leukemia (CEM-ss) cell lines using fluorescence microscopy, flow cytometry, caspase activity determination, and MTT assays. After 72 h treatment, SG-stabilized AuNPs was shown to be significant (p < 0.05) cytotoxic to the cancer cells in a dose- and time-dependent manner. The IC50 values of SG-stabilized AuNPs on the HeLa, HepG2, CEM-ss, MDA-MB-231 cell lines were 4.75 ± 1.23, 7.14 ± 1.45, 10.32 ± 1.5, and 11.82 ± 0.9 μg/mL, respectively. On the other hand, SG-stabilized AuNPs showed no cytotoxic effect towards the normal human mammary epithelial cells (MCF-10A). SG-stabilized AuNPs significantly (p < 0.05) arrest HeLa cell cycle at G2/M phase and significantly (p < 0.05) activated caspases-3 and -9 activities. The anticancer effect of SG-stabilized AuNPs is via the intrinsic apoptotic pathway. The study showed that SG-stabilized AuNPs is a good candidate to be developed into a chemotherapeutic compound for the treatment of cancers especially cervical cancer.
    Matched MeSH terms: Epithelial Cells/cytology; Epithelial Cells/drug effects*; Epithelial Cells/metabolism
  9. Abbasiliasi S, Tan JS, Bashokouh F, Ibrahim TAT, Mustafa S, Vakhshiteh F, et al.
    BMC Microbiol, 2017 May 23;17(1):121.
    PMID: 28535747 DOI: 10.1186/s12866-017-1000-z
    BACKGROUND: Selection of a microbial strain for the incorporation into food products requires in vitro and in vivo evaluations. A bacteriocin-producing lactic acid bacterium (LAB), Pediococcus acidilactici Kp10, isolated from a traditional dried curd was assessed in vitro for its beneficial properties as a potential probiotic and starter culture. The inhibitory spectra of the bacterial strain against different gram-positive and gram-negative bacteria, its cell surface hydrophobicity and resistance to phenol, its haemolytic, amylolytic and proteolytic activities, ability to produce acid and coagulate milk together with its enzymatic characteristics and adhesion property were all evaluated in vitro.

    RESULTS: P. acidilactici Kp10 was moderately tolerant to phenol and adhere to mammalian epithelial cells (Vero cells and ileal mucosal epithelium). The bacterium also exhibited antimicrobial activity against several gram-positive and gram-negative food-spoilage and food-borne pathogens such as Listeria monocytgenes ATCC 15313, Salmonella enterica ATCC 13311, Shigella sonnei ATCC 9290, Klebsiella oxytoca ATCC 13182, Enterobacter cloaca ATCC 35030 and Streptococcus pyogenes ATCC 12378. The absence of haemolytic activity and proteinase (trypsin) and the presence of a strong peptidase (leucine-arylamidase) and esterase-lipase (C4 and C8) were observed in this LAB strain. P. acidilactici Kp10 also produced acid, coagulated milk and has demonstrated proteolytic and amylolactic activities.

    CONCLUSION: The properties exhibited by P. acidilactici Kp10 suggested its potential application as probiotic and starter culture in the food industry.

    Matched MeSH terms: Epithelial Cells/microbiology
  10. Sharma A, Ahuja S, Diwaker P, Wadhwa N, Arora VK
    Malays J Pathol, 2019 Aug;41(2):191-194.
    PMID: 31427555
    INTRODUCTION: Acinic cell carcinoma (ACC) represents 1-6% of parotid gland neoplasms.

    CASE REPORT: We report cytomorphological features of two uncommon variants of acinic cell carcinoma. The first case was an eleven-year-old female with a nodular mass in parotid and the FNA smears demonstrated a lymphoepithelial lesion composed of epithelial tumour cells with features of acinar cells in a lymphoid background. The second case was a 62-year-old male with a large parotid mass. The FNA smears revealed presence of extracellular, acellular amyloid-like material with tumour cells arranged in follicles.

    DISCUSSION: Awareness of cytomorphological features of these unusual variants of acinic cell carcinoma may help to avoid diagnostic pitfall.

    Matched MeSH terms: Epithelial Cells
  11. Aldoghachi MA, Azirun MS, Yusoff I, Ashraf MA
    Saudi J Biol Sci, 2016 Sep;23(5):634-41.
    PMID: 27579014 DOI: 10.1016/j.sjbs.2015.08.004
    Experiments on hybrid red tilapia Oreochromis sp. were conducted to assess histopathological effects induced in gill tissues of 96 h exposure to waterborne lead (5.5 mg/L). These tissues were investigated by light and scanning electron microscopy. Results showed that structural design of gill tissues was noticeably disrupted. Major symptoms were changes of epithelial cells, fusion in adjacent secondary lamellae, hypertrophy and hyperplasia of chloride cells and coagulate necrosis in pavement cells with disappearance of its microridges. Electron microscopic X-ray microanalysis of fish gills exposed to sublethal lead revealed that lead accumulated on the surface of the gill lamella. This study confirmed that lead exposure incited a difference of histological impairment in fish, supporting environmental watch over aquatic systems when polluted by lead.
    Matched MeSH terms: Epithelial Cells
  12. Kadhim KK, Zuki AB, Noordin MM, Babjee SM
    Anat Histol Embryol, 2011 Jun;40(3):226-33.
    PMID: 21443757 DOI: 10.1111/j.1439-0264.2010.01058.x
    The cranial chamber (proventriculus) and caudal chamber (ventriculus) of the stomach of the Red jungle fowl (Gallus gallus spadiceus) were examined by means of light microscopy. Both chambers presented folds of the tunica mucosa lined by a simple prismatic epithelium that was positive for neutral mucin. Simple tubular glands occupied the lamina propria of both chambers; in the ventriculus of older birds, they showed a coiled base. These ventricular glands were lined by simple cuboidal cells represented by the chief cells and a few large basal cells. The luminal and tubular koilin rodlets and folds of the ventriculus were positive to periodic acid Schiff (PAS) stain. The proventricular glands were situated between the inner and outer layers of the lamina muscularis mucosae. Cells lining the tubulo-alveolar units of the proventricular glands showed a dentate appearance. Vacuoles were not observed, and the cells were negative for Alcian-PAS stain. The tunica submucosa was very thin in the proventricular wall. In the ventriculus, it was not separated from the lamina propria owing to the absence of any lamina muscularis mucosae. The tunica muscularis of the proventriculus was formed by a thick inner layer of circular smooth muscle fibres and a thin outer layer of longitudinal fibres. In addition to these layers, oblique muscle fibres formed the most internal layer of the tunica muscularis in the ventriculus.
    Matched MeSH terms: Epithelial Cells
  13. Sheikh IA, Malik A, AlBasri SFM, Beg MA
    Life Sci, 2018 Jan 01;192:246-252.
    PMID: 29138116 DOI: 10.1016/j.lfs.2017.11.014
    AIMS: Chronic metabolic acidosis (CMA) refers to increased plasma acidity due to disturbed acid-base equilibrium in human body. CMA leads to many dysfunctions including disorders of intestinal metabolism and barrier functions. The human body responds to these intestinal dysfunctions by creating a compensatory mechanism at genomic level in intestinal epithelial cells. This study was to identify the molecular pathways involved in metabolic dysfunction and compensatory adaptations in intestinal epithelium during CMA.

    MAIN METHODS: In silico approaches were utilized to characterize a set of 88 differentially expressed genes (DEGs) from intestinal cells of rat CMA model. Interaction networks were constructed for DEGs by GeneMANIA and hub genes as well as enriched clusters in the network were screened using GLay. Gene Ontology (GO) was used for enriching functions in each cluster.

    KEY FINDINGS: Four gene hubs, i.e., trefoil factor 1, 5-hydroxytryptamine (serotonin) receptor 5a, solute carrier family 6 (neurotransmitter transporter), member 11, and glutamate receptor, ionotropic, n-methyl d-aspartate 2b, exhibiting the highest node degree were predicted. Six biologically related gene clusters were also predicted. Functional enrichment of GO terms predicted neurological processes such as neurological system process regulation and nerve impulse transmission which are related to negative and positive regulation of digestive system processes., intestinal motility and absorption and maintenance of gastrointestinal epithelium.

    SIGNIFICANCE: The study predicted several important genomic pathways that potentially play significant roles in metabolic disruptions or compensatory adaptations of intestinal epithelium induced by CMA. The results provide a further insight into underlying molecular mechanisms associated with CMA.

    Matched MeSH terms: Epithelial Cells/metabolism
  14. Tworzydlo W, Kisiel E, Bilinski SM
    PLoS One, 2013;8(5):e64087.
    PMID: 23667700 DOI: 10.1371/journal.pone.0064087
    Three main reproductive strategies have been described among insects: most common oviparity, ovoviviparity and viviparity. In the latter strategy, the embryonic development takes place within the body of the mother which provides gas exchange and nutrients for embryos. Here we present the results of histological and EM analyses of the female reproductive system of the viviparous earwig, Arixenia esau, focusing on all the modifications related to the viviparity. We show that in the studied species the embryonic development consists of two "physiological phases" that take place in two clearly disparate compartments, i.e. the terminal ovarian follicle and the uterus. In both compartments the embryos are associated with synthetically active epithelial cells. We suggest that these cells are involved in the nourishment of the embryo. Our results indicate that viviparity in arixeniids is more complex than previously considered. We propose the new term "pseudoplacento-uterotrophic viviparity" for this unique two-phase reproductive strategy.
    Matched MeSH terms: Epithelial Cells/metabolism
  15. Mohd Yunus MH, Rashidbenam Z, Fauzi MB, Bt Hj Idrus R, Bin Saim A
    Molecules, 2021 Nov 06;26(21).
    PMID: 34771136 DOI: 10.3390/molecules26216724
    The normal function of the airway epithelium is vital for the host's well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction.
    Matched MeSH terms: Epithelial Cells/metabolism
  16. Musa M, Ouaret D, Bodmer WF
    Anticancer Res, 2020 Nov;40(11):6063-6073.
    PMID: 33109544 DOI: 10.21873/anticanres.14627
    BACKGROUND/AIM: Interactions between colorectal cancer (CRC) cells and myofibroblasts govern many processes such as cell growth, migration, invasion and differentiation, and contribute to CRC progression. Robust experimental tests are needed to investigate the nature of these interactions for future anticancer studies. The purpose of the study was to design and validate in vitro assays for studying the communication between myofibroblasts and CRC epithelial cell lines.

    MATERIALS AND METHODS: The influence of co-culture of myofibroblasts and CRC cell lines is discussed using various in vitro assays including direct co-culture, transwell assays, Matrigel-based differentiation and cell invasion experiments.

    RESULTS: The results from these in vitro assays clearly demonstrated various aspects of the crosstalk between myofibroblasts and CRC cell lines, which include cell growth, differentiation, migration and invasion.

    CONCLUSION: The reported in vitro assays provide a basis for investigating the factors that control the myofibroblast-epithelial cell interactions in CRC in vivo.

    Matched MeSH terms: Epithelial Cells/drug effects
  17. Chai WL, Moharamzadeh K, van Noort R, Emanuelsson L, Palmquist A, Brook IM
    J Periodontal Res, 2013 Oct;48(5):663-70.
    PMID: 23442017 DOI: 10.1111/jre.12062
    Studies of peri-implant soft tissue on in vivo models are commonly based on histological sections prepared using undecalcified or 'fracture' techniques. These techniques require the cutting or removal of implant during the specimen preparation process. The aim of this study is to explore a new impression technique that does not require any cutting or removal of implant for contour analysis of soft tissue around four types of titanium (Ti) surface roughness using an in vitro three-dimensional oral mucosal model (3D OMM).
    Matched MeSH terms: Epithelial Cells/cytology
  18. Tang JR, Mat Isa NA, Ch'ng ES
    PLoS One, 2015;10(11):e0142830.
    PMID: 26560331 DOI: 10.1371/journal.pone.0142830
    Despite the effectiveness of Pap-smear test in reducing the mortality rate due to cervical cancer, the criteria of the reporting standard of the Pap-smear test are mostly qualitative in nature. This study addresses the issue on how to define the criteria in a more quantitative and definite term. A negative Pap-smear test result, i.e. negative for intraepithelial lesion or malignancy (NILM), is qualitatively defined to have evenly distributed, finely granular chromatin in the nuclei of cervical squamous cells. To quantify this chromatin pattern, this study employed Fuzzy C-Means clustering as the segmentation technique, enabling different degrees of chromatin segmentation to be performed on sample images of non-neoplastic squamous cells. From the simulation results, a model representing the chromatin distribution of non-neoplastic cervical squamous cell is constructed with the following quantitative characteristics: at the best representative sensitivity level 4 based on statistical analysis and human experts' feedbacks, a nucleus of non-neoplastic squamous cell has an average of 67 chromatins with a total area of 10.827 μm2; the average distance between the nearest chromatin pair is 0.508 μm and the average eccentricity of the chromatin is 0.47.
    Matched MeSH terms: Epithelial Cells/metabolism*
  19. Tang JR, Mat Isa NA, Ch'ng ES
    PLoS One, 2016;11(10):e0164389.
    PMID: 27741266 DOI: 10.1371/journal.pone.0164389
    Pap test involves searching of morphological changes in cervical squamous epithelial cells by pathologists or cytotechnologists to identify potential cancerous cells in the cervix. Nuclear membrane irregularity is one of the morphological changes of malignancy. This paper proposes two novel techniques for the evaluation of nuclear membrane irregularity. The first technique, namely, penalty-driven smoothing analysis, introduces different penalty values for nuclear membrane contour with different degrees of irregularity. The second technique, which can be subdivided into mean- or median-type residual-based analysis, computes the number of points of nuclear membrane contour that deviates from the mean or median of the nuclear membrane contour. Performance of the proposed techniques was compared to three state-of-the-art techniques, namely, radial asymmetric, shape factor, and rim difference. Friedman and post hoc tests using Holm, Shaffer, and Bergmann procedures returned significant differences for all the three classes, i.e., negative for intraepithelial lesion or malignancy (NILM) versus low grade squamous intraepithelial lesion (LSIL), NILM versus high grade squamous intraepithelial lesion (HSIL), and LSIL versus HSIL when the span value equaled 3 was employed with linear penalty function. When span values equaled 5, 7, and 9, NILM versus LSIL and HSIL showed significant differences regardless of the penalty functions. In addition, the results of penalty-driven smoothing analysis were comparable with those of other state-of-the-art techniques. Residual-based analysis returned significant differences for the comparison among the three diagnostic classes. Findings of this study proved the significance of nuclear membrane irregularity as one of the features to differentiate the different diagnostic classes of cervical squamous epithelial cells.
    Matched MeSH terms: Epithelial Cells/classification; Epithelial Cells/pathology*
  20. Lee HM, Kelly GM, Zainal NS, Yee PS, Fadlullah MZH, Lee BKB, et al.
    Sci Rep, 2019 02 20;9(1):2357.
    PMID: 30787334 DOI: 10.1038/s41598-019-38742-0
    The use of EGFR inhibitors on oral squamous cell carcinoma (OSCC) as monotherapy yielded modest clinical outcomes and therefore would benefit from biomarkers that could predict which patient subsets are likely to respond. Here, we determined the efficacy of erlotinib in OSCC cell lines, and by comparing sensitive and resistant lines to identify potential biomarkers. We focused on the 4717C > G polymorphism in periplakin (PPL) where the CC genotype was associated with erlotinib resistance. To validate this, erlotinib-resistant cell lines harbouring CC genotype were engineered to overexpress the GG genotype and vice versa. Isogenic cell lines were then studied for their response to erlotinib treatment. We demonstrated that overexpression of the GG genotype in erlotinib-resistant lines sensitized them to erlotinib and inhibition of AKT phosphorylation. Similarly, the expression of the CC genotype conferred resistance to erlotinib with a concomitant increase in AKT phosphorylation. We also demonstrated that cell lines with the CC genotype generally are more resistant to other EGFR inhibitors than those with the GG genotype. Overall, we showed that a specific polymorphism in the PPL gene could confer resistance to erlotinib and other EGFR inhibitors and further work to evaluate these as biomarkers of response is warranted.
    Matched MeSH terms: Epithelial Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links