Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Ford C
    J Trop Med Hyg, 1921;24.
    Matched MeSH terms: Garcinia mangostana
  2. Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM
    Food Chem Toxicol, 2008 Oct;46(10):3227-39.
    PMID: 18725264 DOI: 10.1016/j.fct.2008.07.024
    Many tropical plants have interesting biological activities with potential therapeutic applications. Garcinia mangostana Linn. (GML) belongs to the family of Guttiferae and is named "the queen of fruits". It is cultivated in the tropical rainforest of some Southeast Asian nations like Indonesia, Malaysia, Sri Lanka, Philippines, and Thailand. People in these countries have used the pericarp (peel, rind, hull or ripe) of GML as a traditional medicine for the treatment of abdominal pain, diarrhea, dysentery, infected wound, suppuration, and chronic ulcer. Experimental studies have demonstrated that extracts of GML have antioxidant, antitumoral, antiallergic, anti-inflammatory, antibacterial, and antiviral activities. The pericarp of GML is a source of xanthones and other bioactive substances. Prenylated xanthones isolated from GML have been extensively studied; some members of these compounds possess antioxidant, antitumoral, antiallergic, anti-inflammatory, antibacterial, antifungal and antiviral properties. Xanthones have been isolated from pericarp, whole fruit, heartwood, and leaves. The most studied xanthones are alpha-, beta-, and gamma-mangostins, garcinone E, 8-deoxygartanin, and gartanin. The aim of this review is to summarize findings of beneficial properties of GML's extracts and xanthones isolated from this plant so far.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  3. Ee GC, Daud S, Izzaddin SA, Rahmani M
    J Asian Nat Prod Res, 2008 May-Jun;10(5-6):475-9.
    PMID: 18464091 DOI: 10.1080/10286020801948490
    Our current interest in searching for natural anti-cancer lead compounds from plants has led us to the discovery that the stem and roots of Garcinia mangostana can be a source of such compounds. The stem furnished 2,8-dihydroxy-6-methoxy-5-(3-methylbut-2-enyl)-xanthone (1), which is a new xanthone. Meanwhile, the root bark of the plant furnished six xanthones, namely alpha-mangostin (2), beta-mangostin (3), gamma-mangostin (4), garcinone D (5), mangostanol (6), and gartanin (7). The hexane and chloroform extracts of the root bark of G. mangostana as well as the hexane extract of the stem bark were found to be active against the CEM-SS cell line. gamma-Mangostin (4) showed good activity with a very low IC(50) value of 4.7 microg/ml, while alpha-mangostin (2), mangostanol (6), and garcinone D (5) showed significant activities with IC(50) values of 5.5, 9.6, and 3.2 microg/ml, respectively. This is the first report on the cytotoxicity of the extracts of the stem and root bark of G. mangostana and of alpha-mangostin, mangostanol, and garcinone D against the CEM-SS cell line.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  4. Yodhnu S, Sirikatitham A, Wattanapiromsakul C
    J Chromatogr Sci, 2009 Mar;47(3):185-9.
    PMID: 19298703
    Mangosteen, Garcinia mangostana L., is known as the "Queen of fruits" and can be cultivated in the tropical rainforest such as Malaysia, Indonesia, and Thailand. Compounds isolated from the fruit peel of mangosteen contain abundant xanthones (especially alpha-mangostin). It has been used as traditional medicine such as anti-inflammatory and antibacterial and is popularly applied to cosmetic and pharmaceutical products. However, there is little information for quality and quantity determination of alpha-mangostin in mangosteen. Thus, the aim of this study was to set up a validated and stability-indicated isocratic reverse-phase high-performance liquid chromatographic (HPLC) method for quality control and quantity determination of a-mangostin from mangosteen peel extract. The assay was fully validated and shown to be linear (r(2) > 0.999), sensitive (LOD = 0.02 microg/mL and LOQ = 0.08 microg/mL), accurate (intra-day was between 98.1-100.8%, inter-day was between 90.0-101.3%), precise (intra-day variation < or = 1.8%, inter-day variation < or = 4.3%), specific, and with good recovery. Total analysis was approximately 8 min. The finalized method is also a stability-indicating assay. The present method should be useful for analytical research and for routine quality control analysis of alpha-mangostin in mangosteen peel extract and products of mangosteen.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  5. Teh SS, Ahmad R, Wan-Abdullah WN, Liong MT
    J Food Sci, 2010 Apr;75(3):M155-64.
    PMID: 20492305 DOI: 10.1111/j.1750-3841.2010.01538.x
    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. The objective of this study was to evaluate the effects of agrowastes from durian (Durio zibethinus), cempedak (Artocarpus champeden), and mangosteen (Garcinia mangostana) as immobilizers for lactobacilli grown in soymilk. Rinds from the agrowastes were separated from the skin, dried, and ground (150 microm) to form powders and used as immobilizers. Scanning electron microscopy revealed that lactobacilli cells were attached and bound to the surface of the immobilizers. Immobilized cells of Lactobacillus acidophilus FTDC 1331, L. acidophilus FTDC 2631, L. acidophilus FTDC 2333, L. acidophilus FTDC 1733, and L. bulgaricus FTCC 0411 were inoculated into soymilk, stored at room temperature (25 degrees C) and growth properties were evaluated over 168 h. Soymilk inoculated with nonimmobilized cells was used as the control. Utilization of substrates, concentrations of lactic and acetic acids, and changes in pH were evaluated in soymilk over 186 h. Immobilized lactobacilli showed significantly better growth (P < 0.05) compared to the control, accompanied by higher production of lactic and acetic acids in soymilk. Soymilk containing immobilized cells showed greater reduction of soy sugars such as stachyose, raffinose, sucrose, fructose, and glucose compared to the control (P < 0.05).
    Matched MeSH terms: Garcinia mangostana
  6. Ling LT, Radhakrishnan AK, Subramaniam T, Cheng HM, Palanisamy UD
    Molecules, 2010 Apr;15(4):2139-51.
    PMID: 20428033 DOI: 10.3390/molecules15042139
    Thirteen Malaysian plants; Artocarpus champeden, Azadirachta indica, Fragaria x ananassa, Garcinia mangostana, Lawsonia inermis, Mangifera indica, Nephelium lappaceum, Nephelium mutobile, Peltophorum pterocarpum, Psidium guajava and Syzygium aqueum, selected for their use in traditional medicine, were subjected to a variety of assays. Antioxidant capability, total phenolic content, elemental composition, as well as it cytotoxity to several cell lines of the aqueous and ethanolic extracts from different parts of these selected Malaysian plants were determined. In general, the ethanolic extracts were better free radical scavengers than the aqueous extracts and some of the tested extracts were even more potent than a commercial grape seed preparation. Similar results were seen in the lipid peroxidation inhibition studies. Our findings also showed a strong correlation of antioxidant activity with the total phenolic content. These extracts when tested for its heavy metals content, were found to be below permissible value for nutraceutical application. In addition, most of the extracts were found not cytotoxic to 3T3 and 4T1 cells at concentrations as high as 100 microg/mL. We conclude that although traditionally these plants are used in the aqueous form, its commercial preparation could be achieved using ethanol since a high total phenolic content and antioxidant activity is associated with this method of preparation.
    Matched MeSH terms: Garcinia mangostana/chemistry
  7. Soosean C, Marimuthu K, Sudhakaran S, Xavier R
    Eur Rev Med Pharmacol Sci, 2010 Jul;14(7):605-11.
    PMID: 20707250
    The efficacy of dietary inclusion of various parts of mangosteen (Garcinia mangostana L.) extract on growth and hematological parameters of African catfish (Clarias gariepinus) fingerlings were investigated.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  8. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    PMID: 22818000
    BACKGROUND: Xanthones are a group of oxygen-containing heterocyclic compounds with remarkable pharmacological effects such as anti-cancer, antioxidant, anti-inflammatory, and antimicrobial activities.
    METHODS: A xanthones extract (81% α-mangostin and 16% γ-mangostin), was prepared by crystallization of a toluene extract of G. mangostana fruit rinds and was analyzed by LC-MS. Anti-colon cancer effect was investigated on HCT 116 human colorectal carcinoma cells including cytotoxicity, apoptosis, anti-tumorigenicity, and effect on cell signalling pathways. The in vivo anti-colon cancer activity was also investigated on subcutaneous tumors established in nude mice.
    RESULTS: The extract showed potent cytotoxicity (median inhibitory concentration 6.5 ± 1.0 μg/ml), due to induction of the mitochondrial pathway of apoptosis. Three key steps in tumor metastasis including the cell migration, cell invasion and clonogenicity, were also inhibited. The extract and α-mangostin up-regulate the MAPK/ERK, c-Myc/Max, and p53 cell signalling pathways. The xanthones extract, when fed to nude mice, caused significant growth inhibition of the subcutaneous tumor of HCT 116 colorectal carcinoma cells.
    CONCLUSIONS: Our data suggest new mechanisms of action of α-mangostin and the G. mangostana xanthones, and suggest the xanthones extract of as a potential anti-colon cancer candidate.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  9. Madihah Ahmad, Bohari M. Yamin, Azwan Mat Lazim
    MyJurnal
    α-Mangostin was extracted from the pericarp of the Malaysian local Garcinia mangostana linn., The structure was characterised by Infrared red, UV-Visible and Nuclear Magnetic Resonance spectroscopic data. The fluorescence peak at 500nm in ethanol was not observed in PNIPAM microgel solution. The increase of colloidal size of the gel in the presence of α-mangostin was studied by Dynamic Light Scattering and Transmission Electron Microscope. The size of the particle also increases with increasing temperature up to 45⁰C after which it began to shrink. The TEM micrograph at 45°C showed a uniformly structured pattern of the gel occurs in the range of the lowest solution critical temperature.
    Matched MeSH terms: Garcinia mangostana
  10. Keith LM, Matsumoto TK
    Plant Dis, 2013 Jan;97(1):146.
    PMID: 30722309 DOI: 10.1094/PDIS-07-12-0702-PDN
    Mangosteen (Garcinia mangostana L.) is a tropical evergreen tree that produces one of the most prized tropical fruits, commonly known as the "Queen of the Fruits.″ Mangosteen has the potential to occupy a rapidly expanding niche market in Hawaii. In October 2009, a disease was observed that produced brown leaf spots and blotches surrounded by bright yellow halos at a mangosteen orchard located in Hakalau, Hawaii (19° 53' 49″ N, 155° 7' 35″ W). Recently transplanted 10+ year old trees were 95 to 100% infected. Pieces of infected leaves and stems were surface-sterilized, plated on potato dextrose agar (PDA), and incubated at 24°C ± 1°C for 21 days. The fungus growing on PDA was pale buff with sparse aerial mycelium and acervuli containing black, slimy spore masses. Single spore isolates were used for the morphological characteristics and molecular analysis. Conidia were 5-celled. Apical and basal cells were hyaline; the three median cells were umber to olivaceous. Conidia (n = 50) were 24.3 ± 0.2 × 7.5 ± 0.1 μm, with apical appendages, typically three, averaging 24.3 ± 0.4 μm long, and a basal appendage averaging 6.7 ± 0.2 μm long. DNA sequences were obtained from the β-tubulin gene and the internal transcribed spacer (ITS1 and ITS2) and 5.8S regions of the rDNA to confirm the identification. The morphological descriptions and measurements were similar to P. virgatula (Kleb.) Steyaert (1). Although sequence data of the ITS region (GenBank Accession No. JN542546) supports the identity of the fungus as P. virgatula, the taxonomy of this genus remains confused since there are only a few type cultures, so it is impossible to use sequences in GenBank to reliably clarify species names (2). To confirm pathogenicity, six leaves of two 3-year-old seedlings were inoculated. Seven-day-old cultures grown on 10% V8 agar at 24°C under continuous fluorescent lighting were used for inoculations. The inoculum consisted of spore suspensions in sterile distilled water adjusted to 6 × 105 conidia/ml. Using a fine haired paint brush, the inoculum was brushed onto the youngest leaves, while sterile distilled water was used as the control. The plants were incubated in a clear plastic bag placed on the laboratory bench at 24°C for 48 hours, then placed on a greenhouse bench and observed weekly for symptoms. After 14 days, leaf spots ranging in size from pinpoint to 5.4 mm in diameter with a distinctive yellow halo were present. Within 35 days, the leaf spots enlarged to leaf blotches ranging in size from 11.5 × 13.3 mm up to 28.3 × 34.6 mm with brown centers and a distinctive yellow halo identical to the field symptoms. A Pestalotiopsis sp. identical to that used to inoculate the seedlings was recovered from the leaf spots and blotches, confirming Koch's postulates. The experiment was repeated twice. Pestalotiopsis leaf blight has been reported in other countries growing mangosteen, including Thailand, Malaysia, and North Queensland, Australia (3). However, to our knowledge, this is the first report of a Pestalotiopsis sp. causing a disease on mangosteen in Hawaii. Although this disease is considered a minor problem in the literature (3), effective management practices should be established to avoid potential production losses. References: (1) E. F. Guba. Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge, MA. 1961. (2) S. S. N. Maharachchikumbura et al. Fungal Div. 50:167, 2011. (3) R. C. Ploetz. Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, Oxfordshire, UK, 2003.
    Matched MeSH terms: Garcinia mangostana
  11. See I, Ee GC, Teh SS, Kadir AA, Daud S
    Molecules, 2014 Jun 04;19(6):7308-16.
    PMID: 24901833 DOI: 10.3390/molecules19067308
    A detailed chemical study on the ethyl acetate and methanol extracts of the stem bark of Garcinia mangostana resulted in the successful isolation of one new prenylated xanthone, mangaxanthone B (1), one new benzophenone, mangaphenone (2), and two known xanthones, mangostanin (3) and mangostenol (4). The structures of these compounds were elucidated through analysis of their spectroscopic data obtained using 1D and 2D NMR and MS techniques.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  12. Khaw KY, Choi SB, Tan SC, Wahab HA, Chan KL, Murugaiyah V
    Phytomedicine, 2014 Sep 25;21(11):1303-9.
    PMID: 25172794 DOI: 10.1016/j.phymed.2014.06.017
    Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  13. Ee GC, See I, Teh SS, Daud S
    J Asian Nat Prod Res, 2014;16(7):790-4.
    PMID: 24670077 DOI: 10.1080/10286020.2014.901313
    Our phytochemical study on the stem bark of Garcinia mangostana has led to the discovery of a new furanoxanthone, mangaxanthone A (1), together with five known analogs. The five known analogs that were isolated are α-mangostin (2), β-mangostin (3), cowagarcinone B (4), and dulcisxanthone F (5). The structural elucidations of these compounds were carried out by interpreting their spectroscopic data, mainly 1D and 2D NMR spectra and MS.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  14. Siti Azima, A.M., Noriham, A., Manshoor, N.
    MyJurnal
    The plant extract serves not only as a good source of bioactive compounds but also as natural pigment that can be applied as colourants in food and pharmaceutical products. The aim of this study were to determine the anthocyanin content of Garcinia mangostana peel extract (GMPE), Clitoria ternatea extract (CTE) and Syzigium cumini extract (SCE) in relation to their antioxidant activity and their colour properties. The antioxidant activities related to the phenolic constituents including anthocyanin content were determined based on the EC50 of DPPH radical scavenging activity and Ferric Reducing Antioxidant Power (FRAP) assay. The colour properties of the plant extracts were measured based on their degradation index (DI), indices of polymeric colour (PC) and colour density (CD). GMPE showed higher FRAP value and lower EC50 value which were 79.37 mmoles/g and 0.11 mg/ml, respectively, as compared to SCE extract with FRAP value, 25.66 mmoles/g and EC50 value, 0.22 mg/ml. Total monomeric anthocyanin (tmAcy) exhibited a strong correlation between FRAP assay (r2 = 0.998) and DPPH assay (r2 = 0.859). GMPE showed high CD (1.63 AU), moderate PC (0.18 AU) but low in DI (1.19 AU) while SCE exhibited low in CD (0.55 AU) and PC (0.07 AU) but moderate DI (1.26 AU). CTE exhibited high in DI (5.39 AU) and PC (0.19 AU) but moderate in CD (0.55). Hence, it can be concluded that colour pigment obtained from GMPE exhibited high antioxidant activity and better colour properties as compared to SCE and the strong correlation between tmAcy and two antioxidant activity assays which are FRAP and DPPH indicated that monomeric anthocyanin plays a major role in antioxidant activity of these plant extracts.
    Matched MeSH terms: Garcinia mangostana
  15. Paengkoum P, Phonmun T, Liang JB, Huang XD, Tan HY, Jahromi MF
    Asian-Australas J Anim Sci, 2015 Oct;28(10):1442-8.
    PMID: 26323400 DOI: 10.5713/ajas.13.0834
    The objectives of this study were to determine the molecular weight of condensed tannins (CT) extracted from mangosteen (Garcinia mangostana L) peel, its protein binding affinity and effects on fermentation parameters including total gas, methane (CH4) and volatile fatty acids (VFA) production. The average molecular weight (Mw) of the purified CT was 2,081 Da with a protein binding affinity of 0.69 (the amount needed to bind half the maximum bovine serum albumin). In vitro gas production declined by 0.409, 0.121, and 0.311, respectively, while CH4 production decreased by 0.211, 0.353, and 0.549, respectively, with addition of 10, 20, and 30 mg CT/500 mg dry matter (DM) compared to the control (p<0.05). The effects of CT from mangosteen-peel on in vitro DM degradability (IVDMD) and in vitro N degradability was negative and linear (p<0.01). Total VFA, concentrations of acetic, propionic, butyric and isovaleric acids decreased linearly with increasing amount of CT. The aforementioned results show that protein binding affinity of CT from mangosteen-peel is lower than those reported for Leucaena forages, however, the former has stronger negative effect on IVDMD. Therefore, the use of mangosteen-peel as protein source and CH4 mitigating agent in ruminant feed requires further investigations.
    Matched MeSH terms: Garcinia mangostana
  16. Abu-Bakar NB, Makahleh A, Saad B
    J Sep Sci, 2016 Mar;39(5):947-55.
    PMID: 26718308 DOI: 10.1002/jssc.201501109
    A novel microextraction method based on vortex- and CO2 -assisted liquid-liquid microextraction with salt addition for the isolation of furanic compounds (5-hydroxymethyl-2-furaldehyde, 5-methyl-2-furaldehyde, 2-furaldehyde, 3-furaldehyde, 2-furoic and 3-furoic acids) was developed. Purging the sample with CO2 was applied after vortexing to enhance the phase separation and mass transfer of the analytes. The optimum extraction conditions were: extraction solvent (volume), propyl acetate (125 μL); sample pH, 2.4; vortexing time, 45 s; salt concentration, 25% w/v and purging time, 5 min. The analytes were separated using an ODS Hypersil C18 column (250×4.6 mm i.d, 5 μm) under gradient flow. The proposed method showed good linearities (r(2) >0.999), low detection limits (0.08-1.9 μg/L) and good recoveries (80.7-122%). The validated method was successfully applied for the determination of the furanic compounds in concentrated juice (mango, date, orange, pomegranate, roselle, mangosteen and soursop) and dried fruit (prune, date and apricot paste) samples.
    Matched MeSH terms: Garcinia mangostana
  17. Samsir SA, Bunawan H, Yen CC, Noor NM
    Data Brief, 2016 Sep;8:1-5.
    PMID: 27257614 DOI: 10.1016/j.dib.2016.04.062
    In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600-3100 cm(-) (1) in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South) were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast) were in another clustered group.
    Matched MeSH terms: Garcinia mangostana
  18. Samsir SA, Bunawan H, Yen CC, Noor NM
    Data Brief, 2016 Sep;8:1438-42.
    PMID: 27617279 DOI: 10.1016/j.dib.2016.08.016
    In this dataset, we present 15 Simple Sequence Repeat (SSR) markers with the motifs (AC)n, (GA)n, and (AC)n(AG)n using a ISSR-Suppression-PCR technique in order to discriminate Garcinia mangostana from diverse geographical origins in Peninsular Malaysia. A few loci showed differences between 3 and 6 bp in allele size, indicating that there are some polymorphisms between individuals correlating to the number of SSR repeats that may be useful for differentiate of genotypes. Collectively, these data show that the ISSR-Suppression-PCR is a valuable method to illustrate genetic variation of selected G. mangostana in Malaysia.
    Matched MeSH terms: Garcinia mangostana
  19. Noratirah Shazlin, M.A., Asmah, R., Nurul Shazini, R., Hawa, Z.E.J.
    MyJurnal
    Mangosteen is a native fruit from Southeast Asia. It is rich in phenolic compounds like xanthones, anthocyanins and phenolic acids and also a good source of fibre and minerals. The present study aim to investigate the effects of mangosteen aril supplementation on the histopathological changes of liver and kidney in rats fed with high fat diet. Forty male Sprague Dawley rats were divided into five groups (n=8), which consisted of normal control group (NC), obese control group (OC), obese supplemented with 200 mg/kg mangosteen group (M200), obese supplemented with 400 mg/kg mangosteen group (M400) and obese supplemented with 600 mg/kg mangosteen group (M600). At the end of seven weeks, obese groups supplemented with mangosteen aril were force feed to correspond mangosteen dosage while the control groups were force feed with distilled water as placebo. At the end of seven weeks of supplementation period, all rats were sacrificed and liver and kidney were collected. All data were analyzed using one way ANOVA and the differences between groups were considered significant at p < 0.05. Results showed that supplementation of mangosteen aril in obese rats able to ameliorate the abnormalities in their liver and kidney tissue caused by high fat diet.
    Matched MeSH terms: Garcinia mangostana
  20. Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SRM
    J Ethnopharmacol, 2017 Feb 23;198:302-312.
    PMID: 28108382 DOI: 10.1016/j.jep.2017.01.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Cancer has proceeded to surpass one of the most chronic illnesses to be the major cause of mortality in both the developing and developed world. Garcinia mangostana L. (mangosteen, family Guttiferae) known as the queen of fruits, is one of the most popular tropical fruits. It is cultivated in Southeast Asian countries: Malaysia, Indonesia, Sri Lanka, Burma, Thailand, and Philippines. Traditionally, numerous parts of G. mangostana have been utilized to treat various ailments such as abdominal pain, haemorrhoids, food allergies, arthritis, leucorrhoea, gonorrhea, diarrhea, dysentery, wound infection, suppuration, and chronic ulcer.

    AIM OF STUDY: Although anticancer activity has been reported for the plant, the goal of the study was designed to isolate and characterize the active metabolites from G. mangostana and measure their cytotoxic properties. In this research, the mechanism of antiproliferative/cytotoxic effects of the tested compounds was investigated.

    MATERIALS AND METHODS: The CHCl3 fraction of the air-dried fruit hulls was repeatedly chromatographed on SiO2, RP18, Diaion HP-20, and polyamide columns to furnish fourteen compounds. The structures of these metabolites were proven by UV, IR, 1D, and 2D NMR measurements and HRESIMS. Additionally, the cytotoxic potential of all compounds was assessed against MCF-7, HCT-116, and HepG2 cell lines using SRB-U assay. Antiproliferative and cell cycle interference effects of potentially potent compounds were tested using DNA content flow cytometry. The mechanism of cell death induction was also studied using annexin-V/PI differential staining coupled with flow cytometry.

    RESULTS: The CHCl3 soluble fraction afforded two new xanthones: mangostanaxanthones V (1) and VI (2), along with twelve known compounds: mangostanaxanthone IV (3), β-mangostin (4), garcinone E (5), α-mangostin (6), nor-mangostin (7), garcimangosone D (8), aromadendrin-8-C-β-D-glucopyranoside (9), 1,2,4,5-tetrahydroxybenzene (10), 2,4,3`-trihydroxybenzophenone-6-O-β-glucopyranoside (11), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (12), epicatechin (13), and 2,4,6,3`,5`-pentahydroxybenzophenone (14). Only compound 5 showed considerable antiproliferative/cytotoxic effects with IC50's ranging from 15.8 to 16.7µM. Compounds 3, 4, and 6 showed moderate to weak cytotoxic effects (IC50's ranged from 45.7 to 116.4µM). Using DNA content flow cytometry, it was found that only 5 induced significant cell cycle arrest at G0/G1-phase which is indicative of its antiproliferative properties. Additionally, by using annexin V-FITC/PI differential staining, 5 induced cells killing effect via the induction of apoptosis and necrosis in both HepG2 and HCT116 cells. Compound 3 produce necrosis and apoptosis only in HCT116 cells. On contrary, 6 induced apoptosis and necrosis in HepG2 cells and moderate necrosis in HCT116 cells.

    CONCLUSION: Fourteen compounds were isolated from chloroform fraction of G. mangostana fruit hulls. Cytotoxic properties exhibited by the isolated xanthones from G. mangostana reinforce the avail of it as a natural cytotoxic agent against various cancers. These evidences could provide relevant bases for the scientific rationale of using G. mangostana in anti-cancer treatment.

    Matched MeSH terms: Garcinia mangostana/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links