Displaying publications 1 - 20 of 124 in total

Abstract:
Sort:
  1. Nor Azman NS, Hossan MS, Nissapatorn V, Uthaipibull C, Prommana P, Jin KT, et al.
    Exp Parasitol, 2018 Nov;194:67-78.
    PMID: 30268422 DOI: 10.1016/j.exppara.2018.09.020
    Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5 cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5 cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50 
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  2. Teo HG, Wong JY, Ting TLL
    BMJ Case Rep, 2017 Oct 20;2017.
    PMID: 29054893 DOI: 10.1136/bcr-2017-221150
    A previously healthy man presented with fever for 2 days and rapidly progressive purpuric rash for 1 day. He progressed into hypotension, disseminated intravascular coagulation and refractory shock despite resuscitation and early antibiotic commencement. Blood culture grew Streptococcus pneumoniae This case report highlights the fact that purpura fulminans can be a rare presentation of S. pneumoniae infection as well.
    Matched MeSH terms: Gram-Positive Bacteria
  3. Oskoueian E, Abdullah N, Ahmad S, Saad WZ, Omar AR, Ho YW
    Int J Mol Sci, 2011;12(9):5955-70.
    PMID: 22016638 DOI: 10.3390/ijms12095955
    Defatted Jatropha curcas L. (J. curcas) seed kernels contained a high percentage of crude protein (61.8%) and relatively little acid detergent fiber (4.8%) and neutral detergent fiber (9.7%). Spectrophotometric analysis of the methanolic extract showed the presence of phenolics, flavonoids and saponins with values of 3.9, 0.4 and 19.0 mg/g DM, respectively. High performance liquid chromatography (HPLC) analyses showed the presence of gallic acid and pyrogallol (phenolics), rutin and myricetin (flavonoids) and daidzein (isoflavonoid). The amount of phorbol esters in the methanolic extract estimated by HPLC was 3.0 ± 0.1 mg/g DM. Other metabolites detected by GC-MS include: 2-(hydroxymethyl)-2 nitro-1,3-propanediol, β-sitosterol, 2-furancarboxaldehyde, 5-(hydroxymethy) and acetic acid in the methanolic extract; 2-furancarboxaldehyde, 5-(hydroxymethy), acetic acid and furfural (2-furancarboxaldehyde) in the hot water extract. Methanolic and hot water extracts of kernel meal showed antimicrobial activity against both Gram positive and Gram negative pathogenic bacteria (inhibition range: 0-1.63 cm) at the concentrations of 1 and 1.5 mg/disc. Methanolic extract exhibited antioxidant activities that are higher than hot water extract and comparable to β-carotene. The extracts tended to scavenge the free radicals in the reduction of ferric ion (Fe(3+)) to ferrous ion (Fe(2+)). Cytotoxicity assay results indicated the potential of methanolic extract as a source of anticancer therapeutic agents toward breast cancer cells.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects; Gram-Positive Bacteria/growth & development
  4. Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, et al.
    PMID: 27318600 DOI: 10.1016/j.jphotobiol.2016.06.007
    The use of nontoxic biological compounds in the synthesis of nanomaterials is an economic and eco-friendly approach. The present work was undertaken to develop zinc oxide nanoparticles (ZnO-NPs) by a green method using simple precursor from the solution consisting of zinc acetate and the flower extract of Anchusa italica (A. italica). Effect of annealing temperature on structural and antimicrobial properties was investigated. The crystalline structure of ZnO-NPs was shown using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) results showed that ZnO-NPs are hexagonal in shapes with mean particle size of ~8 and ~14nm at 100°C and 200°C annealing temperatures respectively. The optical band gap was increased from 3.27eV to 3.30eV with the decreasing of the particle size. The antimicrobial activity of ZnO-NPs towards Gram positive (Bacillus megaterium and Stapphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhimurium) pathogens decreased with the increasing of the heat treating temperature. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 142μg/mL was shown. The results indicated that A. italica is an appropriate reaction media to prepare ZnO-NPs for cosmetic and bio-medical productions.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  5. Darah I, Tong WY, Nor-Afifah S, Nurul-Aili Z, Lim SH
    Eur Rev Med Pharmacol Sci, 2014;18(2):171-8.
    PMID: 24488904
    Caulerpa (C.) sertularioides has many therapeutic uses in the practice of traditional medicine in Malaysia. Crude methanolic, diethyl ether extract, ethyl acetate extract and butanolic extract from C. sertularioides were subjected to antimicrobial screening including the three Gram-positive and three Gram-negative diarrhea-caused bacteria.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*; Gram-Positive Bacterial Infections/drug therapy; Gram-Positive Bacterial Infections/microbiology
  6. Alkotaini B, Anuar N, Kadhum AA, Sani AA
    World J Microbiol Biotechnol, 2014 Apr;30(4):1377-85.
    PMID: 24272828 DOI: 10.1007/s11274-013-1558-z
    A wild-type, Gram-positive, rod-shaped, endospore-forming and motile bacteria has been isolated from palm oil mill sludge in Malaysia. Molecular identification using 16S rRNA gene sequence analysis indicated that the bacteria belonged to genus Paenibacillus. With 97 % similarity to P. alvei (AUG6), the isolate was designated as P. alvei AN5. An antimicrobial compound was extracted from P. alvei AN5-pelleted cells using 95 % methanol and was then lyophilized. Precipitates were re-suspended in phosphate buffered saline (PBS), producing an antimicrobial crude extract (ACE). The ACE showed antimicrobial activity against Salmonella enteritidis ATCC 13076, Escherichia coli ATCC 29522, Bacillus cereus ATCC 14579 and Lactobacillus plantarum ATCC 8014. By using SP-Sepharose cation exchange chromatography, Sephadex G-25 gel filtration and Tricine SDS-PAGE, the ACE was purified, which produced a ~2-kDa active band. SDS-PAGE and infrared (IR) spectroscopy indicated the proteinaceous nature of the antimicrobial compound in the ACE, and liquid chromatography electrospray ionization mass spectroscopy and de novo sequencing using an automatic, Q-TOF premier system detected a peptide with the amino acid sequence F-C-K-S-L-P-L-P-L-S-V-K (1,330.7789 Da). This novel peptide was designated as AN5-2. The antimicrobial peptide exhibited stability from pH 3 to 12 and maintained its activity after being heated to 90 °C. It also remained active after incubation with denaturants (urea, SDS and EDTA).
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  7. Yeo SK, Liong MT
    Int J Food Sci Nutr, 2012 Nov;63(7):821-31.
    PMID: 22264088 DOI: 10.3109/09637486.2011.652942
    The objective of this study was to evaluate the effects of ultraviolet (UV) radiation (UVB; 90 J/m²) on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of L. casei FTDC 2113. UV radiation significantly enhanced (P < 0.05) the growth of parent cells in mannitol-soymilk fermented at 37°C for 24 h. This had led to an enhanced intracellular and extracellular β-glucosidase activity with a subsequent increase in bioconversion of isoflavones in mannitol-soymilk (P < 0.05). UV radiation also promoted (P < 0.05) the tolerance of parent cells towards acidic condition (pH 2 and 3) and intestinal bile salts (oxgall, taurocholic and cholic acid). In addition, parent treated cells also exhibited better (P < 0.05) adhesion ability to mucin and antimicrobial activity compared to that of the control. All these positive effects of UV radiation were only prevalent in the parent cells without inheritance by first, second and third passage of cells. Although temporary, our results suggested that UV radiation could enhance the bioactive and probiotic potentials of L. casei FTDC 2113, and thus could be applied for the production of probiotic products with enhanced bioactivity.
    Matched MeSH terms: Gram-Positive Bacteria/growth & development
  8. Lai HY, Lim YY, Kim KH
    PMID: 20429956 DOI: 10.1186/1472-6882-10-15
    Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally for the treatment of various skin diseases, stomach pain, urinary bladder complaints and sterilization of women. The aim of the study was to evaluate antioxidant, anticancer and antibacterial activity of five solvent fractions obtained from the methanol extract of the leaves of Blechnum orientale Linn.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  9. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2020;20(15):1559-1571.
    PMID: 30179132 DOI: 10.2174/1389557518666180903151849
    BACKGROUND: Various analogues of benzimidazole are found to be biologically and therapeutically potent against several ailments. Benzimidazole when attached with heterocyclic rings has shown wide range of potential activities. So, from the above provided facts, we altered benzimidazole derivatives so that more potent antagonists could be developed. In the search for a new category of antimicrobial and anticancer agents, novel azomethine of 2-mercaptobenzimidazole derived from 3-(2- (1H-benzo[d]imidazol-2-ylthio)acetamido)benzohydrazide were synthesized.

    RESULTS AND DISCUSSION: The synthesized analogues were characterized by FT-IR, 1H/13C-NMR and MS studies as well C, H, N analysis. All synthesized compounds were evaluated for in vitro antibacterial activity against Gram-positive (B. subtilis), Gram-negative (E. coli, P. aeruginosa, K. pneumoniae and S. typhi) strains and in vitro antifungal activity against C. albicans and A. niger strains by serial dilution method, the minimum inhibitory concentration (MIC) described in μM/ml. The in vitro anticancer activity of synthesized compounds was determined against human colorectal carcinoma cell line (HCT- 116) using 5-fluorouracil as standard drug.

    CONCLUSION: In general, most of the synthesized derivatives exhibited significant antimicrobial and anticancer activities. Compounds 8, 10, 15, 16, 17, 20 and 22 showed significant antimicrobial activity towards tested bacterial and fungal strains and compound 26 exhibited significant anticancer activity.

    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  10. Lee ML, Tan NH, Fung SY, Sekaran SD
    PMID: 21059402 DOI: 10.1016/j.cbpc.2010.11.001
    The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  11. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2019;19(13):1080-1092.
    PMID: 30306865 DOI: 10.2174/1389557518666181009151008
    BACKGROUND: Increased rate of mortality due to the development of resistance to currently available antimicrobial and anticancer agents initiated the need to develop new chemical entities for the treatment of microbial infections and cancer.

    OBJECTIVE: The present study was aimed to synthesize and evaluate antimicrobial and anticancer activities of Schiff bases of 2-mercaptobenzimidazole.

    METHODS: The Schiff bases of 2-mercaptobenzimidazole were synthesized from 4-(2-(1H-benzo[d]- imidazol-2-ylthio)acetamido)benzohydrazide. The synthesized compounds were evaluated for antimicrobial and anticancer activities by tube dilution method and Sulforhodamine-B (SRB) assay, respectively.

    RESULTS: Compounds 8 (MICpa, an = 2.41, 1.20 µM/ml), 10 (MICse, sa = 2.50 µM/ml), 20 (MICec = 2.34 µM/ml) and 25 (MICca = 1.46 µM/ml) showed significant antimicrobial activity against tested bacterial and fungal strains and compounds 20 (IC50 = 8 µg/ml) and 23 (IC50 = 7 µg/ml) exhibited significant anticancer activity.

    CONCLUSION: In general, the synthesized derivatives exhibited moderate antimicrobial and anticancer activities. Compounds 8 and 25 having high antifungal potential among the synthesized compounds may be taken as lead molecules for the development of novel antifungal agents.

    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  12. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 07 05;23(7).
    PMID: 29976903 DOI: 10.3390/molecules23071646
    Gingerols and shogaols are compounds found in ginger (Zingiber officinale Roscoe); shogaols are found in lower concentration than gingerols but exhibit higher biological activities. This work studied the effects of different drying methods including open sun drying (OSD) solar tunnel drying (STD) and hot air drying (HAD) with various temperature on the formation of six main active compounds in ginger rhizomes, namely 6-, 8-, and 10-gingerols and 6-, 8-, and 10-shogaols, as well as essential oil content. Antioxidant and antimicrobial activity of dried ginger was also evaluated. High performance liquid chromatography (HPLC) analysis showed that after HAD with variable temperature (120, 150 and 180 °C), contents of 6-, 8-, and 10-gingerols decreased, while contents of 6-, 8-, and 10-shogaol increased. High formation of 6-, 8-, and 10-shogaol contents were observed in HAD (at 150 °C for 6 h) followed by STD and OSD, respectively. OSD exhibited high content of essential oil followed by STD and HAD method. Ginger-treated with HAD exhibited the highest DPPH (IC50 of 57.8 mg/g DW) and FRAP (493.8 µM of Fe(II)/g DM) activity, compared to STD and OSD method. HAD ginger exhibited potent antimicrobial activity with lower minimum inhibition concentration (MIC) value against bacteria strains followed by STD and OSD, respectively. Ginger extracts showed more potent antimicrobial activity against Gram positive bacteria than Gram negative bacteria strains. Result of this study confirmed that conversion of gingerols to shogaols was significantly affected by different drying temperature and time. HAD at 150 °C for 6 h, provides a method for enhancing shogaols content in ginger rhizomes with improving antioxidant and antimicrobial activities.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  13. Triassi AJ, Wheatley MS, Savka MA, Gan HM, Dobson RC, Hudson AO
    Front Microbiol, 2014;5:509.
    PMID: 25309529 DOI: 10.3389/fmicb.2014.00509
    Despite the urgent need for sustained development of novel antibacterial compounds to combat the drastic rise in antibiotic resistant and emerging bacterial infections, only a few clinically relevant antibacterial drugs have been recently developed. One of the bottlenecks impeding the development of novel antibacterial compounds is the identification of new enzymatic targets. The nutritionally essential amino acid anabolic pathways, for example lysine biosynthesis, provide an opportunity to explore the development of antibacterial compounds, since human genomes do not possess the genes necessary to synthesize these amino acids de novo. The diaminopimelate (DAP)/lysine (lys) anabolic pathways are attractive targets for antibacterial development since the penultimate lys precursor meso-DAP (m-DAP) is a cross-linking amino acid in the peptidoglycan (PG) cell wall of most Gram-negative bacteria and lys plays a similar role in the PG of most Gram-positive bacteria, in addition to its role as one of the 20 proteogenic amino acids. The L,L-diaminopimelate aminotransferase (DapL) pathway was recently identified as a novel variant of the DAP/lys anabolic pathways. The DapL pathway has been identified in the pathogenic bacteria belonging to the genus; Chlamydia, Leptospira, and Treponema. The dapL gene has been identified in the genomes of 381 or approximately 13% of the 2771 bacteria that have been sequenced, annotated and reposited in the NCBI database, as of May 23, 2014. The narrow distribution of the DapL pathway in the bacterial domain provides an opportunity for the development and or discovery of narrow spectrum antibacterial compounds.
    Matched MeSH terms: Gram-Positive Bacteria
  14. Baskaran SM, Zakaria MR, Mukhlis Ahmad Sabri AS, Mohamed MS, Wasoh H, Toshinari M, et al.
    Environ Pollut, 2021 Feb 13;276:116742.
    PMID: 33621735 DOI: 10.1016/j.envpol.2021.116742
    Biodiesel side stream waste glycerol was identified as a cheap carbon source for rhamnolipids (RLs) production which at the same time could improve the management of waste. The present study aimed to produce RLs by using Pseudomonas aeruginosa RS6 utilizing waste glycerol as a substrate and to evaluate their physico-chemicals properties. Fermentation conditions such as temperature, initial medium pH, waste glycerol concentration, nitrogen sources and concentrations resulted in different compositions of the mono- and di-RLs produced. The maximum RLs production of 2.73 g/L was obtained when P. aeruginosa RS6 was grown in a basal salt medium supplemented with 1% waste glycerol and 0.2 M sodium nitrate at 35 °C and pH 6.5. At optimal fermentation conditions, the emulsification index (E24) values of cooking oil, diesel oil, benzene, olive oil, petroleum, and kerosene were all above E24=50%. The surface tension reduction obtained from 72.13 mN/m to 29.4-30.4 mN/m was better than the surface activity of some chemical-based surfactants. The RLs produced possessed antimicrobial activities against Gram-negative and Gram-positive bacteria with values ranging from 37% to 77% of growth inhibition when 1 mg/mL of RLs was used. Concentrations of RLs below 1500 μg/mL did not induce phytotoxicity effects on the tested seeds (Vigna radiata) compared to the chemical-based- surfactant, SDS. Furthermore, RLs tested on zebrafish (Danio rerio) embryos only exhibited low acute toxicity with an LC50 value of 72.97 μg/mL at 48 h of exposure suggesting a green and eco-biochemical worthy of future applications to replace chemical-based surfactants.
    Matched MeSH terms: Gram-Positive Bacteria
  15. Teo SP, Bhakta S, Stapleton P, Gibbons S
    Antibiotics (Basel), 2020 Dec 16;9(12).
    PMID: 33339285 DOI: 10.3390/antibiotics9120913
    The present study aimed to screen plants for bioactive compounds with potential antibacterial activities. In our efforts to evaluate plants from Borneo, we isolated and elucidated the structures of four natural products from the bioactive fraction of a chloroform extract of Goniothalamus longistipetes using various chromatographic and spectroscopic techniques. The bioactive compounds were identified as a known styryllactone, (+)-altholactone ((2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (1), a new styryllactone, (2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (2) as well as a new alkaloid, 2,6-dimethoxyisonicotinaldehyde (3) and a new alkenyl-5-hydroxyl-phenyl benzoic acid (4). 1 and 4 showed broad-spectrum anti-bacterial activities against Gram-positive and Gram-negative bacteria as well as acid-fast model selected for this study. Compound 2 only demonstrated activities against Gram-positive bacteria whilst 3 displayed selective inhibitory activities against Gram-positive bacterial strains. Additionally, their mechanisms of anti-bacterial action were also investigated. Using Mycobacterium smegmatis as a fast-growing model of tubercle bacilli, compounds 1, 2 and 4 demonstrated inhibitory activities against whole-cell drug efflux and biofilm formation; two key intrinsic mechanisms of antibiotic resistance. Interestingly, the amphiphilic compound 4 exhibited inhibitory activity against the conjugation of plasmid pKM101 in Escherichia coli using a plate conjugation assay. Plasmid conjugation is a mechanism by which Gram-positive and Gram-negative-bacteria acquire drug resistance and virulence. These results indicated that bioactive compounds isolated from Goniothalamus longistipetes can be potential candidates as 'hits' for further optimisation.
    Matched MeSH terms: Gram-Positive Bacteria
  16. Wayah SB, Philip K
    Front Microbiol, 2018;9:564.
    PMID: 29636737 DOI: 10.3389/fmicb.2018.00564
    Micrococcus luteus, Listeria monocytogenes, and Bacillus cereus are major food-borne pathogenic and spoilage bacteria. Emergence of antibiotic resistance and consumer demand for foods containing less of chemical preservatives led to a search for natural antimicrobials. A study aimed at characterizing, investigating the mechanism of action and regulation of biosynthesis and evaluating the biopreservative potential of pentocin from Lactobacillus pentosus CS2 was conducted. Pentocin MQ1 is a novel bacteriocin isolated from L. pentosus CS2 of coconut shake origin. The purification strategy involved adsorption-desorption of bacteriocin followed by RP-HPLC. It has a molecular weight of 2110.672 Da as determined by MALDI-TOF mass spectrometry and a molar extinction value of 298.82 M-1 cm-1. Pentocin MQ1 is not plasmid-borne and its biosynthesis is regulated by a quorum sensing mechanism. It has a broad spectrum of antibacterial activity, exhibited high chemical, thermal and pH stability but proved sensitive to proteolytic enzymes. It is potent against M. luteus, B. cereus, and L. monocytogenes at micromolar concentrations. It is quick-acting and exhibited a bactericidal mode of action against its targets. Target killing was mediated by pore formation. We report for the first time membrane permeabilization as a mechanism of action of the pentocin from the study against Gram-positive bacteria. Pentocin MQ1 is a cell wall-associated bacteriocin. Application of pentocin MQ1 improved the microbiological quality and extended the shelf life of fresh banana. This is the first report on the biopreservation of banana using bacteriocin. These findings place pentocin MQ1 as a potential biopreservative for further evaluation in food and medical applications.
    Matched MeSH terms: Gram-Positive Bacteria
  17. Ridzuan, P.M., Hairul Aini Hamzah, Anis Shah, Norazian Mohd Hassan, Baharudin Roesnita
    MyJurnal
    Antibacterial activity of different types of P. odorata leaf extracts was evaluated in combination with
    standard antibiotics. Persicaria. odorata leaves were extracted with n-hexane (n-hex), dichloromethane
    (DCM) and methanol (MeOH). Each extract was applied on vancomycin (30µg), erythromycin (15µg) and
    gentamicin (10µg) discs, respectively. Disk diffusion method was used to evaluate the synergistic activity of
    each combination on Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes,
    Streptococcus pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, and Escherichia coli. Minimum
    inhibitory concentration (MIC) and gas chromatography mass spectrometry (GCMS) analysis was performed on
    the active extract. Synergistic effects seen were mainly from the n-hex+antibiotics combinations, mainly on
    the Gram-positive bacteria (7 additive, 5 antagonistic), with MIC range from 50 µg/ml to 100 µg/ml, as well
    as Gram-negative bacteria (2 additive, 2 indifferent, 5 antagonistic). In particular, synergism showed by the
    combination of n-hex+van were all additive against the susceptible bacteria. DCM extract combination
    showed synergistic effects on three Gram-positive species (S. aureus, S. epidermidis, S. pyogenes).
    Meanwhile, MeOH+antibiotics combination showed significant additive synergistic effects (p
    Matched MeSH terms: Gram-Positive Bacteria
  18. Tevan, R., Govindaraju, Mugilan, Jayakumar, Saravanan, Govindan, Natanamurugaraj, Mohd Hasbi Ab. Rahim, Maniam, Gaanty Pragas, et al.
    MyJurnal
    A biological method was employed to synthesize silver nanoparticles through marine diatom Amphora sp. Antimicrobial efficacy test against different pathogenic bacteria were performed through synthesized silver nanoparticles. The physio-chemical properties of synthesized silver nanoparticles were studied using analytical techniques such as UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM), EnergyDispersive X-ray Spectroscopy (EDX) and Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Powder Diffraction (XRD). UV-Vis color intensity study and higher magnification of the Field Emission Scanning Electron Microscopy image showed the synthesized silver nanoparticles were rod shaped with a size range from 42 nm to 46 nm. The synthesized nanoparticles exhibited antibacterial activities in varying magnitudes. About 10 mg/ml of silver nanoparticles were able to inhibit the growth of gram-negative bacteria while gram-positive bacteria were resistant towards similar concentrations of silver nanoparticles.
    Matched MeSH terms: Gram-Positive Bacteria
  19. Rafieerad AR, Bushroa AR, Amiri A, Kalaiselvam K, Vellasamy KM, Vadivelu J
    J Hazard Mater, 2018 10 15;360:132-140.
    PMID: 30099356 DOI: 10.1016/j.jhazmat.2018.07.107
    Antibacterial ability is vital in biological approaches as well as functional biomaterials. Besides, cytocompatibility aspect of biologic media, tissue and organs is always concern for appropriate synthesis. From the past, metallic/oxide phases of silver (Ag) material in various macro, micro or nano configurations have been widely used for antibacterial targets. While, background of Ag toxicity within particle, film and composites is posing gradual ion release affected by molecular bounding. Recent researches conducted to control, optimize and neutralize Ag limitations finding the benefits of ideal (∼ 100%) mediation against both Gram-negative and Gram-positive bacteria. Whereas, non-degradable releases history is still a challenge and its longer accumulation may cause to disrupt biostructures and disease risk. Thus, facile development of large-area organic materials with switchable bacteria toxicity and normal cell compatibility function is interesting for concerned approaches. Here, smart positively-charged stable arginine amino acid incorporated mono layer graphene (Arg-EMGr) nanobiocomposite introduced as useful antibacterial and safe bactericidal agent competitive with Ag direct. The immunity characteristic versus Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) comparably assessed with graphene oxide (GO) and different concentrations GO-AgNPs morphology. As cell viability matter, 1,3,5,7-days vitro culture assay shown attachment proliferation and cytotoxicity due to short interaction.
    Matched MeSH terms: Gram-Positive Bacteria
  20. Yusof NAA, Zain NM, Pauzi N
    Int J Biol Macromol, 2019 Mar 01;124:1132-1136.
    PMID: 30496864 DOI: 10.1016/j.ijbiomac.2018.11.228
    Antibacterial activity of zinc oxide (ZnO) nanoparticles have received significant interest, particularly by the implementation of nanotechnology to synthesize particles in nanometer region. ZnO nanoparticles were successfully synthesized through microwave heating by using chitosan as a stabilizing agent and characterized by UV-vis, FTIR, XRD and FESEM-EDX. The aim of the present study is to determine the antibacterial activity of ZnO nanoparticles against Gram-positive bacterium Staphylococcus aureus (S. aureus) and Gram-negative bacterium Escherichia coli (E. coli). The antibacterial effect of ZnO nanoparticles was investigated for the inhibition zone and inactivation of cell growth. The absorption of ZnO nanoparticles was found to be around 360 nm. FTIR results showed the stretching mode of ZnO nanoparticles at 475 cm-1 of the absorption band. EDX results indicated that ZnO nanoparticles have been successfully formed with an atomic percentage of zinc and oxygen at 23.61 and 46.57% respectively. X-ray diffraction result was confirmed the single-phase formation of ZnO nanoparticles and the particle sizes were observed to be around 50 to 130 nm. The results showed that ZnO nanoparticles have displayed inhibition zone of 16 and 13 mm against S. aureus and E. coli respectively. Gram-negative bacteria seemed to be more resistant to ZnO nanoparticles than Gram-positive bacteria.
    Matched MeSH terms: Gram-Positive Bacteria
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links