Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Ikram Ismail, Siti-Ariza Aripin
    MyJurnal
    Danio rerio or commonly known as zebrafish are a very popular fish among scientists and also a well-known vertebrate model species widely used in research. Zebrafish, are also a popular species among aquarists and have been put in aquariums all around the world as ornamental fish. The acid rain phenomenon has lowered the pH level of the wild habitat of zebrafish by shifting it to a more acidic pH level. This study was carried out to observe the effect of low pH level on the reproductive performance of zebrafish. The zebrafish were quarantined for a week to make sure they were healthy to be used in the experiment. The zebrafish were reared continuously for 14 days in three different pH treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8)). T3 (pH 6-8) was used as the control treatment. Hydrochloric acid (HCl) was used to control the pH level of treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8) with three replicates of each treatment. The male chasing female frequency was significant (p: 0.0001) and the data showed the highest frequency (2568.000±140.6272) at treatment 3 (pH 6-8). For the spawning frequency of zebrafish, treatment 3 (pH 6-8) showed the highest value (4.000±0.5774) followed by treatment 2 and treatment 1 and the data was significant (p: 0.0004). The fertilisation rate of the zebrafish was significant (p: 0.0001) and the highest was shown at T2 (pH 4-6) with 89.8018±0.3782, followed by T3 and treatment T1. For the hatching rate of the zebrafish, the data collected were significant (p: 0.0002) and the highest value of 2.9350±0.4070 was shown at T3 (pH 6-8), followed by T2 (pH 4-6) and T1 (pH 2-4). The overall result showed that pH 2-4 had the worst effect on the reproductive performance of zebrafish. Therefore, low pH has a significant effect on reducing the reproductive performance of zebrafish. The local fish population can be affected by the decrease of pH level due to acid rains and chemical waste pollution.
    Matched MeSH terms: Hydrochloric Acid
  2. Yi X, Yin S, Huang L, Li H, Wang Y, Wang Q, et al.
    Sci Total Environ, 2021 Jun 01;771:144644.
    PMID: 33736175 DOI: 10.1016/j.scitotenv.2020.144644
    Chlorine radical plays an important role in the formation of ozone and secondary aerosols in the troposphere. It is hence important to develop comprehensive emissions inventory of chlorine precursors in order to enhance our understanding of the role of chlorine chemistry in ozone and secondary pollution issues. Based on a bottom-up methodology, this study presents a comprehensive emission inventory for major atomic chlorine precursors in the Yangtze River Delta (YRD) region of China for the year 2017. Four primary chlorine precursors are considered in this study: hydrogen chloride (HCl), fine particulate chloride (Cl-) (Cl- in PM2.5), chlorine gas (Cl2), and hypochlorous acid (HClO) with emissions estimated for twelve source categories. The total emissions of these four species in the YRD region are estimated to be 20,424 t, 15,719 t, 1556 and 9331 t, respectively. The emissions of HCl are substantial, with major emissions from biomass burning and coal combustion, together accounting for 68% of the total HCl emissions. Fine particulate Cl- is mainly emitted from industrial processing, biomass burning and waste incineration. The emissions of Cl2 and HClO are mainly associated with usage of chlorine-containing disinfectants, for example, water treatment, wastewater treatment, and swimming pools. Emissions of each chlorine precursor are spatially allocated based on the characteristics of individual source category. This study provides important basic dataset for further studies with respect to the effects of chlorine chemistry on the formation of air pollution complex in the YRD region.
    Matched MeSH terms: Hydrochloric Acid
  3. Hamsawahini K, Sathishkumar P, Ahamad R, Yusoff AR
    Talanta, 2015 Nov 1;144:969-76.
    PMID: 26452915 DOI: 10.1016/j.talanta.2015.07.049
    In this study, a sensitive and cost-effective electrochemically reduced graphene oxide (ErGO) on graphite reinforced carbon (GRC) was developed for the detection of lead (Pb(II)) ions present in the real-life samples. A film of graphene oxide (GO) was drop-casted on GRC and their electrochemical properties were investigated using cyclic voltammetry (CV), amperometry and square wave voltammetry (SWV). Factors influencing the detection of Pb(II) ions, such as grades of GRC, constant applied cathodic potential (CACP), concentration of hydrochloric acid and drop-casting drying time were optimised. GO is irreversibly reduced in the range of -0.7 V to -1.6 V vs Ag/AgCl (3 M) in acidic condition. The results showed that the reduction behaviour of GO contributed to the high sensitivity of Pb(II) ions detection even at nanomolar level. The ErGO-GRC showed the detection limit of 0.5 nM and linear range of 3-15 nM in HCl (1 M). The developed electrode has potential to be a good candidate for the determination of Pb(II) ions in different aqueous system. The proposed method gives a good recovery rate of Pb(II) ions in real-life water samples such as tap water and river water.
    Matched MeSH terms: Hydrochloric Acid
  4. Chong C
    Talanta, 1986 Jan;33(1):91-4.
    PMID: 18964038
    A simple atomic-absorption spectrophotometry method is described for the determination of silver, bismuth, cadmium, copper, iron, nickel and zinc in lead- and tin-base solders and white-metal bearing alloys, with use of a single sample solution. The sample is dissolved in a mixture of hydrobromic acid and bromine, then fumed with sulphuric acid. The lead sulphate is dissolved in concentrated hydrochloric acid. The method is particularly suitable for the determination of silver and bismuth, which are co-precipitated with lead sulphate. The other elements can also be determined after removal of the lead sulphate by filtration.
    Matched MeSH terms: Hydrochloric Acid
  5. Abdullah SM, Ahmad Z, Sulaiman K
    Sensors (Basel), 2014;14(6):9878-88.
    PMID: 24901979 DOI: 10.3390/s140609878
    An electrochemical cell using an organic compound, copper (II) phthalocyanine-tetrasulfonic acid tetrasodium salt (CuTsPc,) has been fabricated and investigated as a solution-based temperature sensor. The capacitance and resistance of the ITO/CuTsPc solution/ITO chemical cell has been characterized as a function of temperature in the temperature range of 25-80 °C. A linear response with minimal hysteresis is observed. The fabricated temperature sensor has shown high consistency and sensitive response towards a specific range of temperature values.
    Matched MeSH terms: Hydrochloric Acid
  6. Salama SM, Gwaram NS, AlRashdi AS, Khalifa SA, Abdulla MA, Ali HM, et al.
    Sci Rep, 2016 07 27;6:29646.
    PMID: 27460157 DOI: 10.1038/srep29646
    Zinc is a naturally occurring element with roles in wound healing and rescuing tissue integrity, particularly in the gastrointestinal system, where it can be detected in the mucosal and submucosal layers. Zinc chelates are known to have beneficial effects on the gastrointestinal mucosa and in cases of gastric ulcer. We synthesized complexes of zinc featuring a heterocyclic amine binding amino acids then investigated their ability to enhance the gastric self-repair. Zinc-morpholine complex, Zn(L)SCN, namely showed strong free-radical scavenging, promotion of the DNA and RNA polymerases reconstruction and suppression of cell damage. The complex's mode of action is proposed to involve hydrogen bond formation via its bis(thiocyanato-k)zinc moiety. Zn(L)SCN complex had potent effects on gastric enzymatic activity both in vitro and in vivo. The complex disrupted the ulcerative process as demonstrated by changes in the intermediate metabolites of the oxidative pathway - specifically, reduction in the MDA levels and elevation of reduced glutathione together with an attenuation of oxidative DNA damage. Additionally, Zn(L)SCN restored the gastric mucosa, inhibited the production of pro-inflammatory cytokines (IL-6, TNF and the caspases), and preserved the gastric mucous balance. Zn(L)SCN thus exhibited anti-oxidative, anti-inflammatory and anti-apoptotic activities, all of which have cytoprotective effects on the gastric lining.
    Matched MeSH terms: Hydrochloric Acid/adverse effects*
  7. Lau CK, Sim KS, Tso CP
    Scanning, 2011 Jan-Feb;33(1):13-20.
    PMID: 21462221 DOI: 10.1002/sca.20216
    This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark.
    Matched MeSH terms: Hydrochloric Acid
  8. Haslaniza H, Maskat M, Wan Aida W, Mamot S
    Sains Malaysiana, 2014;43:53-63.
    A study was carried out to determine the process parameters and optimization for the hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. Precipitation of the protein in the wash water was done using pH manipulation (pH3-8). The precipitate was hydrolyzed using hydrochloric acid (HCl) and optimized for HCl volume, HCl concentration and hydrolysis time using response surface methodology (RSM) based on a central composite rotatable design. Based on the results, hydrolysis of cockle meat wash water precipitate was carried out by precipitation of the wash water at pH4. Optimum condition for the hydrolysis of 2.0 g of cockle meat wash water precipitate was 25 mL of 1 N HCl for 10 h which resulted in nitrogen content (NC) of 0.7% and degree of hydrolysis (DH) of 55%. NC and DH were significantly influenced only by the hydrolysis time.
    Matched MeSH terms: Hydrochloric Acid
  9. Noor Kamalia Abd Hamed, Noor Sakinah Khalid, Fatin Izyani Mohd Fazli, Muhammad Luqman Mohd Napi, Nafarizal Nayan, Mohd Khairul Ahmad
    Sains Malaysiana, 2016;45:1669-1673.
    Titanium dioxide (TiO2
    ) with various morphologies has been successfully synthesized by a simple hydrothermal method
    at 150o
    C for 10 h using titanium butoxide (TBOT) as a precursor, deionized (DI) water and hydrochloric acid (HCl) on
    a fluorine-doped tin oxide (FTO) substrate. The influences of HCl volume on structural and morphological properties
    of TiO2
    have been studied using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM),
    respectively. The result showed that several morphologies such as microsphere, microrods, nanorods and nanoflowers
    were obtained by varying the volume of hydrochloric acid. The crystallinity of titanium dioxide enhanced with the
    increasing of hydrochloric acid volume.
    Matched MeSH terms: Hydrochloric Acid
  10. Ibrahim DFA, Hasmun NN, Liew YM, Venkiteswaran A
    Photodiagnosis Photodyn Ther, 2024 Feb;45:103989.
    PMID: 38280674 DOI: 10.1016/j.pdpdt.2024.103989
    BACKGROUND: Resin infiltration is used to mask enamel opacities and the recommended etching cycles are three. However, anecdotal evidence suggests that favorable esthetics outcomes can be obtained by increasing the etching cycles.

    AIM: To determine the incremental and total enamel loss when enamel surfaces are exposed to multiple etching cycles and to assess the relative attenuation coefficient after multiple etching cycles and resin infiltration treatment.

    METHODS: Ninety extracted sound human premolars teeth were divided into 9 groups (n = 10); with each consecutive group having one additional etching cycle up to 9 cycles. The teeth were scanned with optical coherence tomography and enamel loss and attenuation coefficient were measured with MATLAB software. Enamel loss (one-way ANOVA, p ≤ 0.05) and attenuation coefficient (two-way ANOVA, p ≤ 0.05) were statistically analyzed.

    RESULTS: There was a significant total enamel loss of more than 33% found at the 7th etching cycle and more. There was no statistically significant difference in the incremental mean depth of penetration of resin between various etching cycles (F(8, 134) = [2.016], one-way ANOVA, p = 0.185).

    CONCLUSION: This study recommends that etching should not be repeated more than seven cycles to prevent excessive enamel loss. Following eight etching cycles, resin infiltration penetration appears approximately equal to that of healthy enamel.

    Matched MeSH terms: Hydrochloric Acid*
  11. Mohammed NJ, Othman NK, Taib MFM, Samat MH, Yahya S
    Molecules, 2021 Jun 09;26(12).
    PMID: 34207914 DOI: 10.3390/molecules26123535
    Extracts from plant materials have great potential as alternatives to inorganic corrosion inhibitors, which typically have harmful consequences. Experimental and theoretical methodologies studied the effectiveness of agricultural waste, namely, date palm seed extract as a green anti-corrosive agent in 0.5 M hydrochloric acid. Experimental results showed that immersion time and temperature are closely related to the effectivity of date palm seed as a corrosion inhibitor. The inhibition efficiency reduced from 95% to 91% at 1400 ppm when the immersion time was increased from 72 h to 168 h. The experimental results also indicated that the inhibition efficiency decreased as the temperature increased. The presence of a protective layer of organic matter was corroborated by scanning electron microscopy. The adsorption studies indicated that date palm seed obeyed Langmuir adsorption isotherm on the carbon steel surface, and Gibbs free energy values were in the range of -33.45 to -38.41 kJ·mol-1. These results suggested that the date palm seed molecules interacted with the carbon steel surface through mixture adsorption. Theoretical calculations using density functional theory showed that the capability to donate and accept electrons between the alloy surface and the date palm seed inhibitor molecules is critical for adsorption effectiveness. The HOMO and LUMO result indicated that the carboxyl (COOH) group and C=C bond were the most active sites for the electron donation-acceptance type of interaction and most auxiliary to the adsorption process over the Fe surface.
    Matched MeSH terms: Hydrochloric Acid/chemistry*
  12. Zal U’yun Wan Mahmood, Norfaizal Mohamed @ Mohamad, Nik Azlin Nik Ariffin, Abdul Kadir Ishak
    MyJurnal
    An improved laboratory technique for measurement of polonium-210(
    210Po) in environmental
    samples has been developed in Radiochemistry and Environmental Laboratory (RAS), Malaysian
    Nuclear Agency. To further improve this technique, a study with the objectives to determine the
    optimum conditions for
    210Po deposition and; evaluate the accuracy and precision results for
    the determination of 2 1 0 P o in environmental samples was carried-out. Polonium-210 which
    is an alpha emitter obtained in acidic solution through total digestion and dissolution of samples
    has been efficiently plated onto one side of the silver disc in the spontaneous plating process for
    measurement of its alpha activity. The optimum conditions for deposition of 210Po were achieved
    using hydrochloric acid (HCl) media at acidity of 0.5 M with the presence of 1.0 gram hydroxyl
    ammonium chloride and the plating temperature at 90
    oC. The plating was carried out in 80 mL
    HCl solution (0.5 M) for 4 hours. The recorded recoveries obtained using 2 0 9 P o tracers in
    the CRM IAEA-385 and environmental samples were 85% – 98% whereby the efficiency of the
    new technique is a distinct advantage over the existing techniques. Therefore, optimization of
    deposition parameters is a prime importance to achieve accuracy and precision results as well as
    economy and time saving
    Matched MeSH terms: Hydrochloric Acid
  13. Nurul Farhana Jufri, Anisah Nordin, Mohamed Kamel Abd Ghani, Yusof Suboh, Noraina Abd Rahim
    MyJurnal
    Acanthamoeba is a free living protozoa that can cause keratitis and granulomatous amoebic encephalitis. Physiological characteristics of this amoeba are found to have a medical importance in which it can be related to the pathogenicity potential of the organism. This study was carried out to investigate the physiological characteristics of survivability during axenization. Six Acanthamoeba strains from three clinical isolates (HSB 1, HKL 48 and HKL 95) and three environmental isolates (PHS 2, PHS 11 and PHS 15) were used in this study. Axenization test was done by treating cysts with hydrochloric acid (3%) and Page saline containing Gentamicin (100 µg/ml). Cysts were then cultured into PYG enrich media, incubated at 30oC and the presence and proliferation of trophozoites of Acanthamoeba were observed. This study showed that PHS 15, HSB 1, HKL 48 and HKL 95 could be axenized but they have poor proliferation rate in PYG enrich media. The result showed that the difference between both clinical and environmental isolates was observed in two strains; PHS 2 and PHS 11. This indicates that there is a possibility that the physiological traits of strains from both isolates are the same and strains from the environment are able to show the pathogenic potential and capable of causing infection to human.
    Matched MeSH terms: Hydrochloric Acid
  14. Jamilan MA, Abdullah J, Alang Ahmad SA, Md Noh MF
    J Food Sci Technol, 2019 Aug;56(8):3846-3853.
    PMID: 31413410 DOI: 10.1007/s13197-019-03855-x
    In this work, voltammetric study based on cetyltrimethylammonium bromide (CTAB) as an ion-pairing agent for the determination of iodine level in iodized table salt has been explored. CTAB was used as an intermediate compound between iodide (I-) and the electrode due to its ability to dissociate to produce cetyltrimethylammonium ions ([CTA]+). The [CTA]+ with a long hydrophobic alkyl chain can be directly adsorbed onto the surface of the working electrode, and this in turns coated the electrode with cationic charge and enhance the electrode ability to bind to iodide (I-) and other molecular iodine ions. A mixture of iodide and CTAB ([CTA]+I-) was prepared and potential of 1.0 V for 60.0 s was applied to pre-concentrate the solution on the working electrode causing the [CTA]+I- to oxidize to iodine (I2). The produced I2 immediately react with chloride ion (Cl-) from the electrolyte of hydrochloric acid (HCl) to produce I2Cl- and form ion-pair with CTA+ as [CTA]+I2Cl-. The linear calibration curve of the developed method towards iodide was in the concentration range of 0.5-4.0 mg/L with sensitivity of - 1.383 µA mg/L-1 cm-2 (R2 = 0.9950), limit of detection (LOD) of 0.3 mg/L and limit of quantification (LOQ) of 1.0 mg/L, respectively. The proposed method indicates good agreement with the standard method for iodine determination with recovery range from 95.0 to 104.3%. The developed method provided potential application as a portable on-site iodine detector.
    Matched MeSH terms: Hydrochloric Acid
  15. Muhamad II, Quin CH, Selvakumaran S
    J Food Sci Technol, 2016 Apr;53(4):1845-55.
    PMID: 27413211 DOI: 10.1007/s13197-015-2107-6
    The purpose of this study was to investigate the preparation of formulated water- in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using a cellulose acetate membrane. The effect of selective membrane emulsification process parameters (concentration of the emulsifiers, number of passes of the emulsions through the membrane and storage temperature) on the properties and stability of the developed emulsions were also investigated. 1, 3, 6, 8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) was used as a hydrophilic model ingredient for the encapsulation of bioactive substances. W/O emulsions with 7 wt% (weight percentage) PGPR displays homogeneous and very fine dispersions, with the median diameter at 0.640 μm. Meanwhile, emulsions prepared by membrane emulsification (fine W/O/W) showed the highest stability at Tween 80 concentrations of 0.5 wt.% (weight percentage). It concluded that at 7 wt.% (weight percentage) PGPR concentration and 0.5 wt.% (weight percentage) Tween 80 concentrations, the most uniform particles with minimum mean size of oil drops (9.926 μm) were obtained after four passes through the membrane. Thus, cellulose acetate membrane can be used for preparing a stable W/O/W emulsions by repeated premix ME due to low cost and relatively easy to handle.
    Matched MeSH terms: Hydrochloric Acid
  16. Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, et al.
    J Ethnopharmacol, 2021 May 10;271:113887.
    PMID: 33539951 DOI: 10.1016/j.jep.2021.113887
    ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever.

    AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages.

    MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS.

    RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin.

    CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.

    Matched MeSH terms: Hydrochloric Acid/toxicity
  17. Wan Ngah WS, Hanafiah MA
    J Environ Sci (China), 2008;20(10):1168-76.
    PMID: 19143339
    The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions from aqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed, pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increased with increase in pH, stirring speed and copper concentration but decreased with increase in biosorbent dose and ionic strength. The isotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. The maximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27 degrees C. The kinetic study revealed that pseudosecond order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determining step in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fourier transform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the binding of copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ion exchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na+, Ca2+, and Mg2+) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at > 99% using 0.05 mol/L HCl, 0.01 mol/L HNO3, and 0.01 mol/L EDTA solutions.
    Matched MeSH terms: Hydrochloric Acid/chemistry
  18. Hafid HS, Rahman NA, Md Shah UK, Baharudin AS
    J Environ Manage, 2015 Jun 1;156:290-8.
    PMID: 25900092 DOI: 10.1016/j.jenvman.2015.03.045
    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production.
    Matched MeSH terms: Hydrochloric Acid/chemistry
  19. See HH, Hauser PC, Sanagi MM, Ibrahim WA
    J Chromatogr A, 2010 Sep 10;1217(37):5832-8.
    PMID: 20696433 DOI: 10.1016/j.chroma.2010.07.054
    A dynamic supported liquid membrane tip extraction (SLMTE) procedure for the effective extraction and preconcentration of glyphosate (GLYP) and its metabolite aminomethylphosphonic acid (AMPA) in water has been investigated. The SLMTE procedure was performed in a semi-automated dynamic mode and demonstrated a greater performance against a static extraction. Several important extraction parameters such as donor phase pH, cationic carrier concentration, type of membrane solvent, type of acceptor stripping phase, agitation and extraction time were comprehensively optimized. A solution of Aliquat-336, a cationic carrier, in dihexyl ether was selected as the supported liquid incorporated into the membrane phase. Quantification of GLYP and AMPA was carried out using capillary electrophoresis with contactless conductivity detection. An electrolyte solution consisting of 12 mM histidine (His), 8 mM 2-(N-morpholino)ethanesulfonic acid (MES), 75 microM cetyltrimethylammonium bromide (CTAB), 3% methanol, pH 6.3, was used as running buffer. Under the optimum extraction conditions, the method showed good linearity in the range of 0.01-200 microg/L (GLYP) and 0.1-400 microg/L (AMPA), acceptable reproducibility (RSD 5-7%, n=5), low limits of detection of 0.005 microg/L for GLYP and 0.06 microg/L for AMPA, and satisfactory relative recoveries (90-94%). Due to the low cost, the SLMTE device was disposed after each run which additionally eliminated the possibility of carry-over between runs. The validated method was tested for the analysis of both analytes in spiked tap water and river water with good success.
    Matched MeSH terms: Hydrochloric Acid/chemistry
  20. Hajeb P, Jinap S
    J Agric Food Chem, 2012 Jun 13;60(23):6069-76.
    PMID: 22515475 DOI: 10.1021/jf300582j
    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
    Matched MeSH terms: Hydrochloric Acid/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links