Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Ibrahim DFA, Hasmun NN, Liew YM, Venkiteswaran A
    Photodiagnosis Photodyn Ther, 2024 Feb;45:103989.
    PMID: 38280674 DOI: 10.1016/j.pdpdt.2024.103989
    BACKGROUND: Resin infiltration is used to mask enamel opacities and the recommended etching cycles are three. However, anecdotal evidence suggests that favorable esthetics outcomes can be obtained by increasing the etching cycles.

    AIM: To determine the incremental and total enamel loss when enamel surfaces are exposed to multiple etching cycles and to assess the relative attenuation coefficient after multiple etching cycles and resin infiltration treatment.

    METHODS: Ninety extracted sound human premolars teeth were divided into 9 groups (n = 10); with each consecutive group having one additional etching cycle up to 9 cycles. The teeth were scanned with optical coherence tomography and enamel loss and attenuation coefficient were measured with MATLAB software. Enamel loss (one-way ANOVA, p ≤ 0.05) and attenuation coefficient (two-way ANOVA, p ≤ 0.05) were statistically analyzed.

    RESULTS: There was a significant total enamel loss of more than 33% found at the 7th etching cycle and more. There was no statistically significant difference in the incremental mean depth of penetration of resin between various etching cycles (F(8, 134) = [2.016], one-way ANOVA, p = 0.185).

    CONCLUSION: This study recommends that etching should not be repeated more than seven cycles to prevent excessive enamel loss. Following eight etching cycles, resin infiltration penetration appears approximately equal to that of healthy enamel.

    Matched MeSH terms: Hydrochloric Acid*
  2. Mohammed NJ, Othman NK, Taib MFM, Samat MH, Yahya S
    Molecules, 2021 Jun 09;26(12).
    PMID: 34207914 DOI: 10.3390/molecules26123535
    Extracts from plant materials have great potential as alternatives to inorganic corrosion inhibitors, which typically have harmful consequences. Experimental and theoretical methodologies studied the effectiveness of agricultural waste, namely, date palm seed extract as a green anti-corrosive agent in 0.5 M hydrochloric acid. Experimental results showed that immersion time and temperature are closely related to the effectivity of date palm seed as a corrosion inhibitor. The inhibition efficiency reduced from 95% to 91% at 1400 ppm when the immersion time was increased from 72 h to 168 h. The experimental results also indicated that the inhibition efficiency decreased as the temperature increased. The presence of a protective layer of organic matter was corroborated by scanning electron microscopy. The adsorption studies indicated that date palm seed obeyed Langmuir adsorption isotherm on the carbon steel surface, and Gibbs free energy values were in the range of -33.45 to -38.41 kJ·mol-1. These results suggested that the date palm seed molecules interacted with the carbon steel surface through mixture adsorption. Theoretical calculations using density functional theory showed that the capability to donate and accept electrons between the alloy surface and the date palm seed inhibitor molecules is critical for adsorption effectiveness. The HOMO and LUMO result indicated that the carboxyl (COOH) group and C=C bond were the most active sites for the electron donation-acceptance type of interaction and most auxiliary to the adsorption process over the Fe surface.
    Matched MeSH terms: Hydrochloric Acid/chemistry*
  3. Yi X, Yin S, Huang L, Li H, Wang Y, Wang Q, et al.
    Sci Total Environ, 2021 Jun 01;771:144644.
    PMID: 33736175 DOI: 10.1016/j.scitotenv.2020.144644
    Chlorine radical plays an important role in the formation of ozone and secondary aerosols in the troposphere. It is hence important to develop comprehensive emissions inventory of chlorine precursors in order to enhance our understanding of the role of chlorine chemistry in ozone and secondary pollution issues. Based on a bottom-up methodology, this study presents a comprehensive emission inventory for major atomic chlorine precursors in the Yangtze River Delta (YRD) region of China for the year 2017. Four primary chlorine precursors are considered in this study: hydrogen chloride (HCl), fine particulate chloride (Cl-) (Cl- in PM2.5), chlorine gas (Cl2), and hypochlorous acid (HClO) with emissions estimated for twelve source categories. The total emissions of these four species in the YRD region are estimated to be 20,424 t, 15,719 t, 1556 and 9331 t, respectively. The emissions of HCl are substantial, with major emissions from biomass burning and coal combustion, together accounting for 68% of the total HCl emissions. Fine particulate Cl- is mainly emitted from industrial processing, biomass burning and waste incineration. The emissions of Cl2 and HClO are mainly associated with usage of chlorine-containing disinfectants, for example, water treatment, wastewater treatment, and swimming pools. Emissions of each chlorine precursor are spatially allocated based on the characteristics of individual source category. This study provides important basic dataset for further studies with respect to the effects of chlorine chemistry on the formation of air pollution complex in the YRD region.
    Matched MeSH terms: Hydrochloric Acid
  4. Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, et al.
    J Ethnopharmacol, 2021 May 10;271:113887.
    PMID: 33539951 DOI: 10.1016/j.jep.2021.113887
    ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever.

    AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages.

    MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS.

    RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin.

    CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.

    Matched MeSH terms: Hydrochloric Acid/toxicity
  5. Tehubijuluw H, Subagyo R, Yulita MF, Nugraha RE, Kusumawati Y, Bahruji H, et al.
    PMID: 33712959 DOI: 10.1007/s11356-021-13285-y
    Red mud as industrial waste from bauxite was utilized as a precursor for the synthesis of mesoporous ZSM-5. A high concentration of iron oxide in red mud was successfully removed using alkali fusion treatment. Mesoporous ZSM-5 was synthesized using cetyltrimethylammonium bromide (CTABr) as a template via dual-hydrothermal method, and the effect of crystallization time was investigated towards the formation of mesopores. Characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicated the formation of cubic crystallite ZSM-5 with high surface area and mesopore volume within 6 h of crystallization. Increasing the crystallization time revealed the evolution of highly crystalline ZSM-5; however, the surface area and mesoporosity were significantly reduced. The effect of mesoporosity was investigated on the adsorption of methylene blue (MB). Kinetic and thermodynamic analysis of MB adsorption on mesoporous ZSM-5 was carried out at a variation of adsorption parameters such as the concentration of MB solution, the temperatures of solution, and the amount of adsorbent. Finally, methanol, 1-butanol, acetone, hydrochloric acid (HCl), and acetonitrile were used as desorbing agents to investigate the reusability and stability of mesoporous ZSM-5 as an adsorbent for MB removal.
    Matched MeSH terms: Hydrochloric Acid
  6. Nur Alia Atiqah Alias, Nabilah Syakirah Zolkifli, Mimi Wahidah Mohd Radzi, Nur Nadia Dzulkifli
    MyJurnal
    Mild steel plays an essential part in many construction industries due to its low cost and excellent mechanical properties. However, the use of strong acid in pickling, construction, and oil refining processes adds to a serious corrosion problem for mild steel. Two Cu(II) dithiocarbamate (DTC) complexes were successfully synthesised, namely Cu(II) ethyl-benzyl DTC (Cu[EtBenzdtc]2) and Cu(II) butyl-methyl DTC (Cu[BuMedtc]2) complexes, by a condensation reaction and subsequently used to scrutinise the corrosion resistance activity towards mild steel in acidic media. The proposed structures of complexes were characterised by using the Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies. The melting point for Cu[EtBenzdtc]2 was found around 362–375°C, and 389–392°C for Cu[BuMedtc]2. The percentages of Cu(II) found in Cu[EtBenzdtc]2 and Cu[BuMedtc]2 were 7.6% and 7.5%, respectively. Both complexes were non-electrolyte based on the molar conductivity analysis. Their corrosion inhibition performances were tested by using a weight loss measurement. Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2. The complexes showed good effectiveness in sulfuric acid (H2SO4) compared to hydrochloric acid (HCl) solution. Furthermore, Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2 with the highest percentage of corrosion inhibition recorded at 91.8%. Meanwhile, the highest percentage of corrosion inhibition shown by Cu[EtBenzdtc]2 was only 86.9%. The lowest corrosion rate shown for Cu[BuMedtc]2 was 8.1944×10-4 cm-1 h-1. Meanwhile, the Cu[EtBenzdtc]2 showed the lowest corrosion rate only at 1.3194×10-3 cm-1 h-1. This implies that Cu[BuMedtc]2 showed lower corrosion rate but higher inhibition efficiency compared to Cu[EtBenzdtc]2.
    Matched MeSH terms: Hydrochloric Acid
  7. Djebli N, Mustafa MR, Keskin M, Kolayli S
    Comb Chem High Throughput Screen, 2021;24(10):1664-1670.
    PMID: 33208062 DOI: 10.2174/1386207323999201117114008
    AIM AND OBJECTIVE: This study aimed at investigating the gastro-protective effects of Algerian Sahara (Sidr) honey from Apis mellifera intermissa against HCl/Ethanol-induced gastric ulcers in rats.

    MATERIALS AND METHODS: Total phenolic content, antioxidant activity and phenolic compounds were determined. Then, three groups of rats (control, HCl/ Ethanol-induced ulcer, and orally administered honey) were used for the determination of gastro-protective effect of Sidr honey.

    RESULTS: Total phenolic content, total flavonoid content, and DPPH activity of the honey sample were determined as 47.35±3.35 mg GAE/ 100 g, 2.13±0.17 mg QE/ 100 g, and 229.24±0.02 mg/mL, respectively. Oral pretreatment of rats with honey (1.2 g/Kg body weight orally at an interval of 2 days) protected gastric mucosa against HCl/Ethanol-induced damage by decreasing ulcer score, the volume and acidity of gastric juice and increasing pH.

    CONCLUSION: These results were confirmed by the histological assessment, which demonstrated a significant gastro-protective activity of Saharian (Sidr) honey against HCl/Ethanol-induced stomach ulcer. Plasma tumor necrosis factor-α, IL-6 and PGE2 were also measured. Sahara honey significantly decreased the plasma TNF-α, PGE2, and IL-6 concentrations.

    Matched MeSH terms: Hydrochloric Acid
  8. Abu Bakar N', Hakim Abdullah MN, Lim V, Yong YK
    PMID: 33976701 DOI: 10.1155/2021/5525584
    Momordica charantia (MC) is popular for its medicinal uses especially for treating diabetic-related complications. However, the antiulcer activity of essential oil derived from the seeds has not been systematically studied. This study aims to evaluate the gastroprotective activities of essential oil derived from the seed of MC induced by hydrochloride acid/ethanol (HCl/EtOH) and indomethacin and pylorus-ligation model. Gastric ulceration was induced by oral administration of HCl/EtOH solution or indomethacin on day 7 after animals have been pretreated with testing compounds. The first group received just distilled water and the second group received ranitidine (100 mg/kg). Groups 3, 4, and 5 received 10, 50, and 100 mg/kg of essential oil based on their body weight (10 mL/kg), respectively. Macroscopically, pretreatment of essential oil extracted from MC significantly decreased ulceration induced by HCl/EtOH and indomethacin in vivo. Microscopically, essential oil also significantly suppressed the formation of edema, epithelial disruption, and mucosa erosions. Moreover, essential oil significantly elevated the pH without decreasing the total acidity of the gastric juice and was able to increase the amount of adherent mucus compared to control. Current results provide scientific basis to the ethno-pharmacological usage of the MC in preventing ulcer formation induced by HCl/EtOH and indomethacin.
    Matched MeSH terms: Hydrochloric Acid
  9. Siti Noriah Mohd Shotor, Nur Anis Atirah Zulkiflee
    MyJurnal
    This paper deals with a review of the inhibition activity of a Schiff bases on the deterioration of mild steel in hydrochloric acid media. Two Schiff base ligands namely N,N’- Bis(salicylidene) ethylenediamine (Sadimine) and N,N’-Bis(bromosalicylidene)- ethylenediamine (Brosadimine) were synthesized from the condensation reactions of salicylaldehyde or 5-bromosalicylaldehyde with ethylenediamine respectively and evaluated as corrosion inhibitor for mild steel in 1 M HCl solution using weight loss method. The use of inhibitors is one of the most practical methods for protection of mild steel against corrosion in acidic media. Schiff bases are widely being employed in such applications. This paper highlights the influence of structure–inhibition activity relationship of Schiff base compounds
    on their performance as corrosion inhibitors of mild steel in acid media. Sadimine and
    Brosadimine show appreciable corrosion inhibition efficiency against the corrosion of mild
    steel in 1 M HCl solution at room temperature. It has been found that Brosadimine shows
    greater corrosion inhibition efficiency than Sadimine due to extra halogen group presence in
    the structure. As the concentration of studied inhibitors increases, the corrosion inhibition
    efficiency of the prepared compounds also increases. This study demonstrated that corrosion
    inhibitors for metals and alloys can preserve the quality and life of metals from corrosion.
    Matched MeSH terms: Hydrochloric Acid
  10. Ikram Ismail, Siti-Ariza Aripin
    MyJurnal
    Danio rerio or commonly known as zebrafish are a very popular fish among scientists and also a well-known vertebrate model species widely used in research. Zebrafish, are also a popular species among aquarists and have been put in aquariums all around the world as ornamental fish. The acid rain phenomenon has lowered the pH level of the wild habitat of zebrafish by shifting it to a more acidic pH level. This study was carried out to observe the effect of low pH level on the reproductive performance of zebrafish. The zebrafish were quarantined for a week to make sure they were healthy to be used in the experiment. The zebrafish were reared continuously for 14 days in three different pH treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8)). T3 (pH 6-8) was used as the control treatment. Hydrochloric acid (HCl) was used to control the pH level of treatments T1 (pH 2-4), T2 (pH 4-6), T3 (pH 6-8) with three replicates of each treatment. The male chasing female frequency was significant (p: 0.0001) and the data showed the highest frequency (2568.000±140.6272) at treatment 3 (pH 6-8). For the spawning frequency of zebrafish, treatment 3 (pH 6-8) showed the highest value (4.000±0.5774) followed by treatment 2 and treatment 1 and the data was significant (p: 0.0004). The fertilisation rate of the zebrafish was significant (p: 0.0001) and the highest was shown at T2 (pH 4-6) with 89.8018±0.3782, followed by T3 and treatment T1. For the hatching rate of the zebrafish, the data collected were significant (p: 0.0002) and the highest value of 2.9350±0.4070 was shown at T3 (pH 6-8), followed by T2 (pH 4-6) and T1 (pH 2-4). The overall result showed that pH 2-4 had the worst effect on the reproductive performance of zebrafish. Therefore, low pH has a significant effect on reducing the reproductive performance of zebrafish. The local fish population can be affected by the decrease of pH level due to acid rains and chemical waste pollution.
    Matched MeSH terms: Hydrochloric Acid
  11. Ariffin AF, Yusof N, Mohd S, Rahman SA, Ramalingam S, Mansor A, et al.
    Cell Tissue Bank, 2019 Dec;20(4):527-534.
    PMID: 31456097 DOI: 10.1007/s10561-019-09785-4
    Calcium contents of demineralised human cortical bone determined by titrimetric assay and atomic absorption spectrophotometry technique were verified by comparing to neutron activation analysis which has high recovery of more than 90%. Conversion factors determined from the comparison is necessary to correct the calcium content for each technique. Femurs from cadaveric donors were cut into cortical rings and demineralised in 0.5 M hydrochloric acid for varying immersion times. Initial calcium content in the cortical bone measured by titration was 4.57%, only 21% of the measurement by neutron activation analysis; while measured by atomic absorption spectrophotometer was 13.4%, only 61% of neutron activation analysis. By comparing more readings with the measurements by neutron activation analysis with 93% recovery, a conversion factor of 4.83 was verified and applied for the readings by titration and 1.45 for atomic absorption spectrophotometer in calculating the correct calcium contents. The residual calcium content started to reduce after the cortical bone was demineralised in hydrochloric acid for 8 h and reduced to 13% after 24 h. Using the linear relationship, the residual calcium content could be reduced to less than 8% after immersion in hydrochloric acid for 40 h. Atomic absorption spectrophotometry technique is the method of choice for calcium content determination as it is more reliable compared to titrimetric assay.
    Matched MeSH terms: Hydrochloric Acid/chemistry
  12. Jamilan MA, Abdullah J, Alang Ahmad SA, Md Noh MF
    J Food Sci Technol, 2019 Aug;56(8):3846-3853.
    PMID: 31413410 DOI: 10.1007/s13197-019-03855-x
    In this work, voltammetric study based on cetyltrimethylammonium bromide (CTAB) as an ion-pairing agent for the determination of iodine level in iodized table salt has been explored. CTAB was used as an intermediate compound between iodide (I-) and the electrode due to its ability to dissociate to produce cetyltrimethylammonium ions ([CTA]+). The [CTA]+ with a long hydrophobic alkyl chain can be directly adsorbed onto the surface of the working electrode, and this in turns coated the electrode with cationic charge and enhance the electrode ability to bind to iodide (I-) and other molecular iodine ions. A mixture of iodide and CTAB ([CTA]+I-) was prepared and potential of 1.0 V for 60.0 s was applied to pre-concentrate the solution on the working electrode causing the [CTA]+I- to oxidize to iodine (I2). The produced I2 immediately react with chloride ion (Cl-) from the electrolyte of hydrochloric acid (HCl) to produce I2Cl- and form ion-pair with CTA+ as [CTA]+I2Cl-. The linear calibration curve of the developed method towards iodide was in the concentration range of 0.5-4.0 mg/L with sensitivity of - 1.383 µA mg/L-1 cm-2 (R2 = 0.9950), limit of detection (LOD) of 0.3 mg/L and limit of quantification (LOQ) of 1.0 mg/L, respectively. The proposed method indicates good agreement with the standard method for iodine determination with recovery range from 95.0 to 104.3%. The developed method provided potential application as a portable on-site iodine detector.
    Matched MeSH terms: Hydrochloric Acid
  13. Junaid A, Lim FPL, Tiekink ERT, Dolzhenko AV
    ACS Comb Sci, 2019 07 08;21(7):548-555.
    PMID: 31180634 DOI: 10.1021/acscombsci.9b00079
    A new, effective one-pot synthesis of the 6, N2-diaryl-1,3,5-triazine-2,4-diamines under microwave irradiation was developed. The method involved an initial three-component condensation of cyanoguanidine, aromatic aldehydes, and arylamines in the presence of hydrochloric acid. Without isolation, the resulting 1,6-diaryl-1,6-dihydro-1,3,5-triazine-2,4-diamines were treated with a base to initiate Dimroth rearrangement and spontaneous dehydrogenative aromatization, affording the desired compounds. The developed method was found to be sufficiently general in scope, tolerating various aromatic aldehydes and amines; by using their combinations in the first step, a representative library of 110 compounds was successfully prepared and screened for anticancer properties.
    Matched MeSH terms: Hydrochloric Acid/pharmacology*; Hydrochloric Acid/chemistry
  14. Zilhadia, Yahdiana,H., Effionora, A., Irwandi, J.
    MyJurnal
    Gelatin from goatskin pretreated with hydrochloric acid and extracted with distilled water at 60oC for 9 hours was characterized and compared to that of bovine skin gelatin (BSG). A yield of 10.26% (wet weight basis) was obtained. Goatskin gelatin (GSG) had high protein (86.58%), suitable moisture (9.58%), low fat (1.46%) and low ash (0.11%) content. The functional properties of GSG including gel strength (301 g bloom) and emulsion activity index (94.27%) were higher than the functional properties of BSG including gel strength (192 g bloom) and emulsion activity index (49.74%). The foaming property of GSG (102%) was lower than that of BSG (164.67%). This study shows that GSG has a high potential for application as a source of commercial gelatin.
    Matched MeSH terms: Hydrochloric Acid
  15. Ibrahim, R.E., Talari, M.K., Sabrina, M. Yahaya, Rosmamuhamadani, R., Sulaiman, S., Ismail, M.I.S.
    MyJurnal
    The aluminium-silicon (Al-Si) based on Metal Matrix Composites (MMCs) is widely used in lightweight
    constructions and transport applications requiring a combination of high strength and ductility. A grain
    refinement plays a crucial role in improving characteristics and properties of Al alloys. In this investigation,
    titanium diboride (TiB2) and scandium (Sc) inoculants were added to the Al-Si alloys for grain refinement of
    an alloy. In this investigation, the corrosion resistance rate of Al-Si cast alloy reinforced by TiB2 and Sc were
    measured by potentiostat (AUTOLAB) instrument. The aim of this research is to investigate the corrosion
    rate for Al-Si-TiB2-Sc composites that immersed in different concentration of acidic solutions. Besides, the
    immersion time of acidic solutions also was investigated. All the samples were prepared accordingly for
    ASTM standard by the composition of 6.0 wt% TiB2 and 0.6wt% Sc. All the samples undergo cold mounting
    technique for easy handling on corrosion tests. Then the samples were immersed in two different
    concentrations acidic medium solutions, which were 0.1.and 1.0 M hydrochloric acids (HCl). The corrosion
    rate also was investigated for immersion samples of 1.0 M HCl for 21 days. From the results obtained, added
    TiB2 and Sc onto Al-Si alloy gave the better properties in corrosion resistance. Corrosion rates to reduce when
    the samples were immersed in a lower concentration of acidic medium, 0.1 HCl. However, there are some
    significant on the result but it still following the corrosion rates trend. Thus, improvements to reinforcement
    content need to be done in further research to cover the lack of this corrosion rates trend.
    Matched MeSH terms: Hydrochloric Acid
  16. Shanzay, A., Siddra, T. A., Warda, F., Sheeza, A., Maryam, A., Aina, S. Z., et al.
    MyJurnal
    Bacterial biofilms are a complex community of microbes in which the cells are embedded in a polysaccharide matrix.
    This slime is a mean of protection in hostile environments. Biofilms in hospital settings are perilous as they not only
    make treatment difficult, cause blockage of pipes but are also cause of serious nosocomial infections thus making their
    dispersal an even more important phenomenon. Any foaming method is not applicable at all places for the cleaning of
    biofilms hence biofilm dispersal by household sweep containing hydrochloric acid was checked using the microliter
    plate assay as dispersal strategy. Bacteria from hospital waste disposal pipes were isolated, its ability to form biofilm
    was noted under different time intervals and then finally biofilm degradation was done using different concentrations
    of household sweep. It was noted that household sweep can be successfully employed at many places especially waste
    disposal pipes and acid resistant tubes. Our results indicated that 20% sweep (HCl conc. 1%) if used for only one
    minute can reduce the biofilms to 50%. Similarly increasing contact time can reduce the biofilms further.
    Matched MeSH terms: Hydrochloric Acid
  17. Lee XJ, Lee LY, Hiew BYZ, Gan S, Thangalazhy-Gopakumar S, Kiat Ng H
    Bioresour Technol, 2017 Dec;245(Pt A):944-953.
    PMID: 28946195 DOI: 10.1016/j.biortech.2017.08.175
    This research investigated the removal of lead (Pb(2+)) by a novel biochar derived from palm oil sludge (POS-char) by slow pyrolysis. Multistage optimizations with central composite design were carried out to firstly optimize pyrolysis parameters to produce the best POS-char for Pb(2+) removal and secondly to optimize adsorption conditions for the highest removal of Pb(2+). The optimum pyrolysis parameters were nitrogen flowrateof30mLmin(-1), heating rateof10°Cmin(-1), temperatureof500°C and timeof30min. The optimum Pb(2+) adsorption conditions were concentrationof200mgL(-1), timeof60min, dosageof0.3g and pH of 3.02. The various functional groups within POS-char played a vital role in Pb(2+) uptake. Regeneration was demonstrated to be feasible using hydrochloric acid. Adsorption equilibrium was best described by Freundlich model. At low concentration range, adsorption kinetic obeyed pseudo-first-order model, but at high concentration range, it followed pseudo-second-order model. Overall, the results highlighted that POS-char is an effective adsorbent for Pb(2+) removal.
    Matched MeSH terms: Hydrochloric Acid
  18. Owolabi AF, Haafiz MK, Hossain MS, Hussin MH, Fazita MR
    Int J Biol Macromol, 2017 Feb;95:1228-1234.
    PMID: 27836655 DOI: 10.1016/j.ijbiomac.2016.11.016
    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds.
    Matched MeSH terms: Hydrochloric Acid/chemistry
  19. Salama SM, Gwaram NS, AlRashdi AS, Khalifa SA, Abdulla MA, Ali HM, et al.
    Sci Rep, 2016 07 27;6:29646.
    PMID: 27460157 DOI: 10.1038/srep29646
    Zinc is a naturally occurring element with roles in wound healing and rescuing tissue integrity, particularly in the gastrointestinal system, where it can be detected in the mucosal and submucosal layers. Zinc chelates are known to have beneficial effects on the gastrointestinal mucosa and in cases of gastric ulcer. We synthesized complexes of zinc featuring a heterocyclic amine binding amino acids then investigated their ability to enhance the gastric self-repair. Zinc-morpholine complex, Zn(L)SCN, namely showed strong free-radical scavenging, promotion of the DNA and RNA polymerases reconstruction and suppression of cell damage. The complex's mode of action is proposed to involve hydrogen bond formation via its bis(thiocyanato-k)zinc moiety. Zn(L)SCN complex had potent effects on gastric enzymatic activity both in vitro and in vivo. The complex disrupted the ulcerative process as demonstrated by changes in the intermediate metabolites of the oxidative pathway - specifically, reduction in the MDA levels and elevation of reduced glutathione together with an attenuation of oxidative DNA damage. Additionally, Zn(L)SCN restored the gastric mucosa, inhibited the production of pro-inflammatory cytokines (IL-6, TNF and the caspases), and preserved the gastric mucous balance. Zn(L)SCN thus exhibited anti-oxidative, anti-inflammatory and anti-apoptotic activities, all of which have cytoprotective effects on the gastric lining.
    Matched MeSH terms: Hydrochloric Acid/adverse effects*
  20. Lam YF, Lee LY, Chua SJ, Lim SS, Gan S
    Ecotoxicol Environ Saf, 2016 May;127:61-70.
    PMID: 26802563 DOI: 10.1016/j.ecoenv.2016.01.003
    Lansium domesticum peel (LDP), a waste material generated from the fruit consumption, was evaluated as a biosorbent for nickel removal from aqueous media. The effects of dosage, contact time, initial pH, initial concentration and temperature on the biosorption process were investigated in batch experiments. Equilibrium data were fitted by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models using nonlinear regression method with the best-fit model evaluated based on coefficient of determination (R(2)) and Chi-square (χ(2)). The best-fit isotherm was found to be the Langmuir model exhibiting R(2) very close to unity (0.997-0.999), smallest χ(2) (0.0138-0.0562) and largest biosorption capacity (10.1mg/g) at 30°C. Kinetic studies showed that the initial nickel removal was rapid with the equilibrium state established within 30min. Pseudo-second-order model was the best-fit kinetic model indicating the chemisorption nature of the biosorption process. Further data analysis by the intraparticle diffusion model revealed the involvement of several rate-controlling steps such as boundary layer and intraparticle diffusion. Thermodynamically, the process was exothermic, spontaneous and feasible. Regeneration studies indicated that LDP biosorbent could be regenerated using hydrochloric acid solution with up to 85% efficiency. The present investigation proved that LDP having no economic value can be used as an alternative eco-friendly biosorbent for remediation of nickel contaminated water.
    Matched MeSH terms: Hydrochloric Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links