Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Chen WN, Shaikh MF, Bhuvanendran S, Date A, Ansari MT, Radhakrishnan AK, et al.
    Curr Neuropharmacol, 2022;20(4):799-808.
    PMID: 34077349 DOI: 10.2174/1570159X19666210528155801
    Poloxamer 188 (P188) is an FDA-approved biocompatible block copolymer composed of repeating units of Poly(Ethylene Oxide) (PEO) and poly(propylene oxide) (PPO). Due to its amphiphilic nature and high Hydrophile-Lipophile Balance (HLB) value of 29, P188 is used as a stabilizer/emulsifier in many cosmetics and pharmaceutical preparations. While the applications of P188 as an excipient are widely explored, the data on the pharmacological activity of P188 are scarce. Notably, the neuroprotective potential of P188 has gained a lot of interest. Therefore, this systematic review is aimed at summarizing evidence of neuroprotective potential of P188 in CNS disorders. The PRISMA model was used, and five databases (Google Scholar, Scopus, Wiley Online Library, ScienceDirect, and PubMed) were searched with relevant keywords. The search resulted in 11 articles, which met the inclusion criteria. These articles described the protective effects of P188 on traumatic brain injury or mechanical injury in cells, neurotoxicity, Parkinson's disease, Amyotrophic lateral sclerosis (ALS), and ischemia/ reperfusion injury from stroke. All the articles were original research in experimental or pre-clinical stages using animal models or in vitro systems. The reported activities demonstrated the potential of P188 as a neuroprotective agent in improving CNS conditions such as neurodegeneration.
    Matched MeSH terms: Poloxamer/pharmacology
  2. Abdullah SNS, Subramaniam KA, Muhamad Zamani ZH, Sarchio SNE, Md Yasin F, Shamsi S
    Molecules, 2022 Jul 14;27(14).
    PMID: 35889367 DOI: 10.3390/molecules27144493
    Curcumin (CUR) has been studied for its biomedical applications due to its active biological properties. However, CUR has limitations such as poor solubility, low bioavailability, and rapid degradation. Thus, CUR was nanoformulated with the application of polymeric micelle. Previous studies of CUR-loaded Pluronic F127 nanoformulation (NanoCUR) were generally prioritized toward cancer cells and its therapeutic values. There are reports that emphasize the toxicity of CUR, but reports on the toxicity of NanoCUR on embryonic developmental stages is still scarce. The present study aims to investigate the toxicity effects of NanoCUR on the embryonic development of zebrafish (Danio rerio). NanoCUR was synthesized via thin film hydration method and then characterized using DLS, UV-Vis, FTIR, FESEM, and XRD. The toxicity assessment of NanoCUR was conducted using zebrafish embryos, in comparison to native CUR, as well as Pluronic F127 (PF) as the controls, and ROS assay was further carried out. It was revealed that NanoCUR showed an improved toxicity profile compared to native CUR. NanoCUR displayed a delayed toxicity response and showed a concentration- and time-dependent toxicity response. NanoCUR was also observed to generate a significantly low reactive oxygen species (ROS) compared to native CUR in ROS assay. Overall, the results obtained highlight the potential of NanoCUR to be developed in clinical settings due to its improved toxicity profile compared to CUR.
    Matched MeSH terms: Poloxamer*
  3. Gadhave D, Tupe S, Tagalpallewar A, Gorain B, Choudhury H, Kokare C
    Int J Pharm, 2021 Sep 25;607:121050.
    PMID: 34454028 DOI: 10.1016/j.ijpharm.2021.121050
    Unfavorable side effects of available antipsychotics limit the use of conventional delivery systems, where limited exposure of the drugs to the systemic circulation could reduce the associated risks. The potential of intranasal delivery is gaining interest to treat brain disorders by delivering the drugs directly to the brain circumventing the tight junctions of the blood-brain barrier with limited systemic exposure of the entrapped therapeutic. Therefore, the present research was aimed to fabricate, optimize and investigate the therapeutic efficacy of amisulpride (AMS)-loaded intranasal in situ nanoemulgel (AMS-NG) in the treatment of schizophrenia. In this context, AMS nanoemulsion (AMS-NE) was prepared by employing aqueous-titration method and optimized using Box-Behnken statistical design. The optimized nanoemulsion was subjected to evaluation of globule size, transmittance, zeta potential, and mucoadhesive strength, which were found to be 92.15 nm, 99.57%, -18.22 mV, and 8.90 g, respectively. The AMS-NE was converted to AMS-NG using poloxamer 407 and gellan gum. Following pharmacokinetic evaluation in Wistar rats, the brain Cmax for intranasal AMS-NG was found to be 1.48-folds and 3.39-folds higher when compared to intranasal AMS-NE and intravenous AMS-NE, respectively. Moreover, behavioral investigations of developed formulations were devoid of any extrapyramidal side effects in the experimental model. Finally, outcomes of the in vivo hematological study confirmed that intranasal administration of formulation for 28 days did not alter leukocytes and agranulocytes count. In conclusion, the promising results of the developed and optimized intranasal AMS-NG could provide a novel platform for the effective and safe delivery of AMS in schizophrenic patients.
    Matched MeSH terms: Poloxamer*
  4. Hsin YK, Thangarajoo T, Choudhury H, Pandey M, Meng LW, Gorain B
    J Pharm Sci, 2023 Feb;112(2):562-572.
    PMID: 36096286 DOI: 10.1016/j.xphs.2022.09.002
    Vaginal candidiasis is a common form of infection in women caused by Candida species. Due to several drawbacks of conventional treatments, the current research is attempted to formulate and optimize a miconazole nitrate-loaded in situ spray gel for vaginal candidiasis. The stimuli-responsive (pH and thermo-responsive) polymers selected for the in situ gel were chitosan and poloxamer 407, respectively, whereas hydroxypropyl methylcellulose (HPMC) was introduced in the formulation to further improve the mucoadhesive property. The dispersion of each polymer was carried out using the cold method, whereas the optimization of the formulation was achieved using Box-Behnken statistical design considering viscosity and gelation temperature as dependent variables. Present design achieved the optimized outcome with HPMC, poloxamer and chitosan at 0.52% (w/v), 18.68% (w/v) and 0.41% (w/v), respectively. Evaluation of drug-excipients compatibility was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy, and thermogravimetric analysis where the results showed the absence of any chemical interaction between the polymers and drug component. The optimized formulation showed gelation temperature at 31°C allowing in situ phase transition in a vaginal environment; pH of 4.21 is suitable for use in the vaginal cavity, and appropriate viscosity (290 cP) at storage temperature (below 30°C) would allow spraying at ease, whereas strong mucoadhesive force (22.4±0.513 g) would prevent leaking of the formulation after application. The drug release profile showed sustained release up to 24 h with a cumulative drug release of 81.72%, which is significantly better than the marketed miconazole nitrate cream. In addition, an improved antifungal activity could be correlated to the sustained release of the drug from the formulation. Finally, the safety of the formulation was established while tested on HaCaT cell lines. Based on our findings, it could be concluded that the in situ hydrogel formulation using stimuli-responsive polymers could be a viable alternative to the conventional dosage form that can help to reduce the frequency of administration with ease of application to the site of infection, thus will provide better patient compliance.
    Matched MeSH terms: Poloxamer/chemistry
  5. Shamsi S, Alagan AA, Sarchio SNE, Md Yasin F
    Int J Nanomedicine, 2020;15:8311-8329.
    PMID: 33149578 DOI: 10.2147/IJN.S271159
    Background: In the current literature, there are ongoing debates on the toxicity of graphene oxide (GO) that demonstrate contradictory findings regarding its toxicity profile. As a potential drug carrier, these findings are very concerning due to the safety concerns in humans, as well as the dramatic rise of GO being excreted into the environment. Therefore, there is an imperative need to mitigate the potential toxicity of GO to allow for a safer application in the future.

    Purpose: The present study aims to address this issue by functionalizing GO with Pluronic F127 (PF) as a means to mitigate toxicity and resolve the biocompatibility of GO. Although results from previous studies generally indicated that Pluronic functionalized GO exhibits relatively low toxicity to living organisms, reports that emphasize on its toxicity, particularly during embryonic developmental stage, are still scarce.

    Methods: In the present study, two different sizes of native GO samples, GO and NanoGO, as well as PF-functionalized GO, GO-PF and NanoGO-PF, were prepared and characterized using DLS, UV-Vis, Raman spectroscopy, FTIR, and FESEM analyses. Toxicological assessment of all GO samples (0-100 µg/mL) on zebrafish embryonic developmental stages (survival, hatching and heart rates, and morphological changes) was recorded daily for up to 96 hours post-fertilization (hpf).

    Results: The toxicity effects of each GO sample were observed to be higher at increasing concentrations and upon prolonged exposure. NanoGO demonstrated lower toxicity effects compared to GO. GO-PF and NanoGO-PF were also found to have lower toxicity effects compared to native GO samples. GO-PF showed the lowest toxicity response on zebrafish embryo.

    Conclusion: These findings highlight that toxicity is dependent on the concentration, size, and exposure period of GO. Functionalization of GO with PF through surface coating could potentially mitigate the toxicity effects of GO in embryonic developmental stages, but further investigation is warranted for broader future applications.

    Matched MeSH terms: Poloxamer/toxicity*; Poloxamer/chemistry
  6. Tajau, R., Wan Yunus, W.M.Z., Mohd Dahlan, K.Z., Mahmood, M.H., Hashim, K., Ismail, M., et al.
    MyJurnal
    This study demonstrated the utilization of radiation-induced initiator methods for the formation of
    nanoparticles of Acrylated Palm Oil (APO) using aqueous Pluronic F-127 (PF-127) microemulsion
    system. This microemulsion system was subjected to gamma irradiation to form the crosslinked APO
    nanoparticles. Dynamic light scattering (DLS), Fourier Transform Infrared (FTIR) spectroscopy and
    Transmission Electron Microscopy (TEM) were used to characterize the size and the chemical structure
    of the nanoparticles. As a result, the size of the APO nanoparticle was decreased when the irradiation
    dose increased. The decrease in size might be due to the effects of intermolecular crosslinking and
    intramolecular crosslinking reactions of the APO nanoparticles during irradiation process. The size of the
    nanoparticle is in the range of 98 to 200 nanometer (nm) after irradiation using gamma irradiator. This radiation-induced method provides a free initiator
    induced and easy to control process as compared
    to the classical or chemical initiator process. The
    study has shown that radiation-induced initiator
    methods, namely, polymerization and crosslinking
    in the microemulsion, were promising for the
    synthesis of nanoparticles.
    Matched MeSH terms: Poloxamer
  7. Mohtar N, A K Khan N, Darwis Y
    Iran J Pharm Res, 2015;14(4):989-1000.
    PMID: 26664366
    Solid lipid nanoparticles of atovaquone (ATQ-SLN) were prepared by high shear homogenization method using tripalmitin, trilaurin, and Compritol 888 ATO as the lipid matrices and Phospholipon 90H, Tween 80, and poloxamer 188 as the surfactants. Optimization of the formulations was conducted using 6 sets of 2(4) full-factorial design based on four independent variables that were the number of homogenizing cycles, concentration of the lipid, concentration of the co-surfactant, and concentration of the main surfactant. The dependent variables were particle size and polydispersity index (PdI). The homogenizing cycles showed a negative influence on the dependent variables which reduced both the particle size and the PdI value. Moreover, a combination of certain percentages of the main surfactant and co-surfactant also showed a negative influence that reduced both the particle size and PdI value. Selected formulations from each design were further characterized for the entrapment efficiency and yield. The optimised formulation of ATQ-SLN consisted of trilaurin, Phospholipon 90H and Tween 80 with a particle size of 89.4 ± 0.2 nm and entrapment efficiency of 83.0 ± 1.7%. The in-vitro release evaluation of the formulation showed a complete and immediate release of ATQ from the SLN that could be a solution to improve the poor aqueous solubility and hence poor bioavailability of the drug.
    Matched MeSH terms: Poloxamer
  8. Tamilvanan S, Kumar BA, Senthilkumar SR, Baskar R, Sekharan TR
    AAPS PharmSciTech, 2010 Jun;11(2):904-9.
    PMID: 20496017 DOI: 10.1208/s12249-010-9455-3
    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze-thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze-thaw cycling. After storing the emulsion at 4 degrees C, 25 degrees C, and 37 degrees C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37 degrees C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.
    Matched MeSH terms: Poloxamer/chemistry*
  9. Abrami M, Golob S, Pontelli F, Chiarappa G, Grassi G, Perissutti B, et al.
    Int J Pharm, 2019 Mar 25;559:373-381.
    PMID: 30716402 DOI: 10.1016/j.ijpharm.2019.01.055
    Bacterial infections represent an important drawback in the orthopaedic field, as they can develop either immediately after surgery procedures or after some years. Specifically, in case of implants, they are alleged to be troublesome as their elimination often compels a surgical removal of the infected implant. A possible solution strategy could involve a local coating of the implant by an antibacterial system, which requires to be easily applicable, biocompatible and able to provide the desired release kinetics for the selected antibacterial drug. Thus, this work focusses on a biphasic system made up by a thermo-reversible gel matrix (Poloxamer 407/water system) hosting a dispersed phase (PLGA micro-particles), containing a model antibacterial drug (vancomycin hydrochloride). In order to understand the key parameters ruling the performance of this delivery system, we developed a mathematical model able to discriminate the drug diffusion inside micro-particles and within the gel phase, eventually providing to predict the drug release kinetics. The model reliability was confirmed by fitting to experimental data, proposing as a powerful theoretical approach to design and optimize such in situ delivery systems.
    Matched MeSH terms: Poloxamer/chemistry
  10. Liu J, Tan CSY, Scherman OA
    Angew Chem Int Ed Engl, 2018 07 16;57(29):8854-8858.
    PMID: 29663607 DOI: 10.1002/anie.201800775
    Supramolecular building blocks, such as cucurbit[n]uril (CB[n])-based host-guest complexes, have been extensively studied at the nano- and microscale as adhesion promoters. Herein, we exploit a new class of CB[n]-threaded highly branched polyrotaxanes (HBP-CB[n]) as aqueous adhesives to macroscopically bond two wet surfaces, including biological tissue, through the formation of CB[8] heteroternary complexes. The dynamic nature of these complexes gives rise to adhesion with remarkable toughness, displaying recovery and reversible adhesion upon mechanical failure at the interface. Incorporation of functional guests, such as azobenzene moieties, allows for stimuli-activated on-demand adhesion/de-adhesion. Macroscopic interfacial adhesion through dynamic host-guest molecular recognition represents an innovative strategy for designing the next generation of functional interfaces, biomedical devices, tissue adhesives, and wound dressings.
    Matched MeSH terms: Poloxamer/chemistry*
  11. Saghir SA, Sadikun A, Al-Suede FS, Majid AM, Murugaiyah V
    Curr Pharm Biotechnol, 2016 6 6;17(10):915-25.
    PMID: 27262321 DOI: 10.2174/1389201017666160603013434
    BACKGROUND: Star fruit (Averrhoa carambola) is a well-known plant in Malaysia which bears a great significance in traditional medicine.

    OBJECTIVES: This study aimed to evaluate the antihyperlipidemic effect, antioxidant potential and cytotoxicity of aqueous and methanolic extracts of ripe and unripe fruits, leaves and stem of A. carambola.

    METHODS: Antihyperlipidemic activity was assessed in poloxamer-407 (P-407) induced acute hyperlipidemic rat's model. The antioxidant activity was assessed in vitro using 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging, 1-diphenyl-2-dipicrylhydrazyl radical scavenging (DPPH) and ferric reducing antioxidant power (FRAP) assays. In addition, cytotoxicity of A. carambola extracts was assessed using MTS assay on four leukemic cell lines (human colon cancer, human promyeloid leukemia, erythroid leukemia, acute myeloid leukemia) and one normal cell (human umbilical vein endothelial cells).

    RESULTS: Methanolic extract of leaves had the most potent antihyperlipidemic activity in P-407 model, whereby it significantly reduced serum levels of total cholesterol (P<0.01), triglycerides (P<0.01), low-density lipoprotein (P<0.05), verylow- density lipoprotein (P<0.01) and atherogenic index (P<0.01). On the other hand, methanolic extracts of A. carambola stem and leaves showed the strongest antioxidant activity. Total phenolic and flavonoid contents of the extracts exhibited significant correlations with antioxidant but not with antihyperlipidemic activities. All plant parts showed no cytotoxic effect on the selected cancer or normal cell lines.

    CONCLUSION: Antihyperlipidemic activity of different parts of A. carambola is greatly affected by extraction solvents used. Methanolic extract of A. carambola leaves exhibited higher antihyperlipidemic and antioxidant potentials compared to other parts of the plant.
    Matched MeSH terms: Poloxamer/chemistry
  12. Alavi T, Rezvanian M, Ahmad N, Mohamad N, Ng SF
    Drug Deliv Transl Res, 2019 04;9(2):508-519.
    PMID: 29181832 DOI: 10.1007/s13346-017-0450-z
    Composite film dressings composed of pluronic F127 (PL)-pectin (PC) and pluronic (PL) F127-gelatin (GL) were investigated as potential drug delivery system for wound healing. Composite films were solvent cast by blending PL with PC or GL in different ratios using glycerol (2.5%) as plasticizer. Erythromycin (ER) (0.1%) was incorporated in films as model hydrophobic antibiotic. The optimized composite films were characterized for physical appearance, morphology, mechanical profile, and thermal behavior. In addition, drug release, antibacterial activity, and cytocompatibility of the films were investigated to assess their potential as drug delivery system. The composite films exhibited excellent wound dressing characters in terms of appearance, stability, and mechanical profile. Moreover, ER-loaded composite films released ER in controlled manner, exhibited antibacterial activity against Staphylococcus aureus, and were non-toxic to human skin fibroblast. These findings demonstrate that these composite films hold the potential to be formulated as antibacterial wound dressing.
    Matched MeSH terms: Poloxamer/administration & dosage*; Poloxamer/chemistry
  13. Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A
    Heliyon, 2020 Nov;6(11):e05365.
    PMID: 33251348 DOI: 10.1016/j.heliyon.2020.e05365
    Background: Conventional drug delivery systems have some major drawbacks such as low bioavailability, short residence time and rapid precorneal drainage. An in situ gel drug delivery system provides several benefits, such as prolonged pharmacological duration of action, simpler production techniques, and low cost of manufacturing. This research aims to get the optimum formula of chloramphenicol in situ gel based on the physical evaluation.

    Methods: The effects of independent variables (poloxamer 407 and hydroxypropyl methyl cellulose (HPMC) concentration) on various dependent variables (gelling capacity, pH and viscosity) were investigated by using 32 factorial design and organoleptic evaluation was done with descriptive analysis.

    Results: The optimized formula of chloramphenicol in situ gel yielded 9 variations of poloxamer 407 and HPMC bases composition in % w/v as follows, F1 (5; 0.45), F2 (7.5; 0.45), F3 (10; 0.45), F4 (5; 0.725), F5 (7.5; 0.725), F6 (10; 0.725), F7 (5; 1), F8 (7.5; 1), F9 (10; 1). The results indicated that the organoleptic, pH, and gelling capacity parameters matched all formulas (F1-F9), however, the viscosity parameter only matched F3, F6, F8, and F9. Based on factorial design, F6 had the best formula with desirability value of 0.54, but the design recommended that formula with the composition bases of poloxamer 407 and HPMC at the ratio of 8.16 % w/v and 0.77 % w/v, respectively, was the optimum formula with a desirability value of 0.69.

    Conclusion: All formulas have met the Indonesian pharmacopoeia requirements based on the physical evaluation, especially formula 6 (F6), which was supported by the result of factorial design analysis.

    Matched MeSH terms: Poloxamer
  14. Rabha B, Bharadwaj KK, Baishya D, Sarkar T, Edinur HA, Pati S
    Polymers (Basel), 2021 Apr 18;13(8).
    PMID: 33919483 DOI: 10.3390/polym13081322
    Diosgenin encapsulated PCL-Pluronic nanoparticles (PCL-F68-D-NPs) were developed using the nanoprecipitation method to improve performance in brain cancer (glioblastoma) therapy. The nanoparticles were characterized by dynamic light scattering (DLS)/Zeta potential, Fourier-transform infrared (FTIR) spectra, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Transmission electron microscopy (TEM). The encapsulation efficiency, loading efficiency, and yield were calculated. The in vitro release rate was determined, and the kinetic model of diosgenin release was plotted and ascertained. The cytotoxicity was checked by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)assay against U87-MG cells (glioblastoma cell lines). The obtained nanoparticles demonstrated good size distribution, stability, morphology, chemical, and mechanical properties. The nanoparticles also possessed high encapsulation efficiency, loading efficiency, and yield. The release rate of Diosgenin was shown in a sustained manner. The in vitro cytotoxicity of PCL-F68-D-NPs showed higher toxicity against U87-MG cells than free Diosgenin.
    Matched MeSH terms: Poloxamer
  15. How KN, Yap WH, Lim CLH, Goh BH, Lai ZW
    Front Pharmacol, 2020;11:1105.
    PMID: 32848737 DOI: 10.3389/fphar.2020.01105
    Hyaluronic acid (HA), a major component of extracellular matrix has been widely applied in pharmaceutical and cosmetic industries due to its reported pharmacological properties. Various types of HA drug delivery system including nanoparticles, cryogel-based formulations, microneedle patches, and nano-emulsions were developed. There are studies reporting that several HA-based transdermal delivery systems exhibit excellent biocompatibility, enhanced permeability and efficient localized release of anti-psoriasis drugs and have shown to inhibit psoriasis-associated skin inflammation. Similarly HA is found in abundant at epidermis of atopic dermatitis (AD) suggesting its role in atopic AD pathology. Anti-allergenic effect of atopic eczema can be achieved through the inhibition of CD44 and protein kinase C alpha (PKCα) interaction by HA. Herein, we aim to evaluate the current innovation on HA drug delivery system and the other potential applications of HA in inflammatory skin diseases, focusing on atopic dermatitis and psoriasis. HA is typically integrated into different delivery systems including nanoparticles, liposomes, ethosomes and microneedle patches in supporting drug penetration through the stratum corneum layer of the skin. For instance, ethosomes and microneedle delivery system such as curcumin-loaded HA-modified ethosomes were developed to enhance skin retention and delivery of curcumin to CD44-expressing psoriatic cells whereas methotrexate-loaded HA-based microneedle was shown to enhance skin penetration of methotrexate to alleviate psoriasis-like skin inflammation. HA-based nanoparticles and pluronic F-127 based dual responsive (pH/temperature) hydrogels had been described to enhance drug permeation through and into the intact skin for AD treatment.
    Matched MeSH terms: Poloxamer
  16. Hosseini S, Lao-Atiman W, Han SJ, Arpornwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Oct 08;8(1):14909.
    PMID: 30297883 DOI: 10.1038/s41598-018-32806-3
    Zinc-air batteries are a promising technology for large-scale electricity storage. However, their practical deployment has been hindered by some issues related to corrosion and passivation of the zinc anode in an alkaline electrolyte. In this work, anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Pluronic F-127 (P127) are examined their applicability to enhance the battery performances. Pristine zinc granules in 7 M KOH, pristine zinc granules in 0-8 mM SDS/7 M KOH, pristine zinc granules in 0-1000 ppm P127/7 M KOH, and SDS coated zinc granules in 7 M KOH were examined. Cyclic voltammograms, potentiodynamic polarization, and electrochemical impedance spectroscopy confirmed that using 0.2 mM SDS or 100 ppm P127 effectively suppressed the anode corrosion and passivation. Nevertheless, direct coating SDS on the zinc anode showed adverse effects because the thick layer of SDS coating acted as a passivating film and blocked the removal of the anode oxidation product from the zinc surface. Furthermore, the performances of the zinc-air flow batteries were studied. Galvanostatic discharge results indicated that the improvement of discharge capacity and energy density could be sought by the introduction of the surfactants to the KOH electrolyte. The enhancement of specific discharge capacity for 30% and 24% was observed in the electrolyte containing 100 ppm P127 and 0.2 mM SDS, respectively.
    Matched MeSH terms: Poloxamer
  17. Shamsi S, Chen Y, Lim LY
    Int J Pharm, 2015 Nov 10;495(1):194-203.
    PMID: 26319630 DOI: 10.1016/j.ijpharm.2015.08.066
    Curcumin (CUR) has been formulated into a host of nano-sized formulations in a bid to improve its in vivo solubility, stability and bioavailability. The aim of this study was to investigate whether the encapsulation of CUR in nanocarriers would impede its biological interactivity, specifically its potential anti-cancer adjuvant activity via the modulation of CYP enzymes in vitro. NanoCUR, a micellar dispersion prepared via a thin film method using only Pluronic F127 as excipient, was amenable to lyophilization, and retained its nano-sized spherical dimensions (17-33 nm) upon reconstitution with water followed by dilution to 5 μM with HBSS or EMEM. NanoCUR was a weaker cytotoxic agent compared to CUR in solution (sCUR), affecting HepG2 cell viability only when the incubation time was prolonged from 4h to 48 h. Correlation with 2h uptake data suggests this was due to a lower cellular uptake rate of CUR from NanoCUR than from sCUR. The poorer CUR accessibility might also account for NanoCUR being a weaker inhibitor of CYP2C9 and CYP2D6 than sCUR. NanoCUR was, however, 1.76-fold more potent against the CYP3A4 (IC50 5.13 ± 0.91 μM) metabolic function. The higher activity against CYP3A4 might be attributed to the synergistic action of Pluronic F127, since the blank micellar dispersion also inhibited CYP3A4 activity. Both sCUR and NanoCUR had no effect on the CYP3A4 mRNA levels in the HepG2 cells. NanoCUR therefore, maintained most of the biological activities of CUR in vitro, albeit at a lower potency and response rate.
    Matched MeSH terms: Poloxamer/chemistry*
  18. Keck CM
    Int J Pharm, 2010 May 5;390(1):3-12.
    PMID: 19733647 DOI: 10.1016/j.ijpharm.2009.08.042
    The influence of optical parameters, additional techniques (e.g. PIDS technology) and the importance of light microscopy were investigated by comparing laser diffraction data obtained via the conventional method and an optimized analysis method. Also the influence of a possible dissolution of nanocrystals during a measurement on the size result obtained was assessed in this study. The results reveal that dissolution occurs if unsaturated medium or microparticle saturated medium is used for the measurements. The dissolution is erratic and the results are not reproducible. Dissolution can be overcome by saturating the measuring medium prior to the measurement. If nanocrystals are analysed the dispersion medium should be saturated with the nanocrystals, because the solubility is higher than for coarse micro-sized drug material. The importance of using the optimized analysis method was proven by analysing 40 different nanosuspensions via the conventional versus the optimized sizing method. There was no large difference in the results obtained for the 40 nanosuspensions using the conventional method. This would have led to the conclusion, that all the 40 formulations investigated are physically stable. However, the analysis via the optimized method revealed that from 40 formulations investigated only four were physically stable. In conclusion an optimized analysis saves time and money and avoids misleading developments, because discrimination between "stable" and "unstable" can be done reliably at a very early stage of the development.
    Matched MeSH terms: Poloxamer/chemistry
  19. Nor Azlan AYH, Katas H, Habideen NH, Mh Busra MF
    Saudi Pharm J, 2020 Nov;28(11):1420-1430.
    PMID: 33250649 DOI: 10.1016/j.jsps.2020.09.007
    Diabetic wounds are difficult to treat due to multiple causes, including reduced blood flow and bacterial infections. Reduced blood flow is associated with overexpression of prostaglandin transporter (PGT) gene, induced by hyperglycaemia which causing poor vascularization and healing of the wound. Recently, gold nanoparticles (AuNPs) have been biosynthesized using cold and hot sclerotium of Lignosus rhinocerotis extracts (CLRE and HLRE, respectively) and capped with chitosan (CS) to produce biocompatible antibacterial nanocomposites. The AuNPs have shown to produce biostatic effects against selected gram positive and negative bacteria. Therefore, in this study, a dual therapy for diabetic wound consisting Dicer subtract small interfering RNA (DsiRNA) and AuNPs was developed to improve vascularization by inhibiting PGT gene expression and preventing bacterial infection, respectively. The nanocomposites were incorporated into thermoresponsive gel, made of pluronic and polyethylene glycol. The particle size of AuNPs synthesized using CLRE (AuNPs-CLRE) and HLRE (AuNPs-HLRE) was 202 ± 49 and 190 ± 31 nm, respectively with positive surface charge (+30 to + 45 mV). The thermoresponsive gels containing DsiRNA-AuNPs gelled at 32 ± 1 °C and released the active agents in sufficient amount with good texture and rheological profiles for topical application. DsiRNA-AuNPs and those incorporated into thermoresponsive pluronic gels demonstrated high cell viability, proliferation and cell migration rate via in vitro cultured cells of human dermal fibroblasts, indicating their non-cytotoxicity and wound healing properties. Taken together, the thermoresponsive gels are expected to be useful as a potential dressing that promotes healing of diabetic wounds.
    Matched MeSH terms: Poloxamer
  20. Jaafar MHM, Hamid KA
    Curr Drug Deliv, 2019;16(7):672-686.
    PMID: 31250754 DOI: 10.2174/1567201816666190620110748
    BACKGROUND: In this study, four nanoparticle formulations (F1 to F4) comprising varying ratios of alginate, Pluronic F-68 and calcium chloride with a constant amount of insulin and chitosan as a coating material were prepared using polyelectrolyte complexation and ionotropic gelation methods to protect insulin against enzymatic degradation.

    METHODS: This study describes the formulation design, optimisation, characterisation and evaluation of insulin concentration via oral delivery in rats. A reversed-phase high-performance liquid chromatography (HPLC) method was developed and validated to quantify insulin concentration in rat plasma. The proposed method produced a linear response over the concentration range of 0.39 to 50 µg/ml.

    RESULTS: In vitro release study showed that dissolution of insulin in simulated gastric juice of pH 1.2 was prevented by alginate core and chitosan coating but rapidly released in simulated intestinal fluid (pH 6.8). Additionally, Formulation 3 (F3) has a particle size of 340.40 ± 2.39 nm with narrow uniformity exhibiting encapsulation efficiency (EE) of 72.78 ± 1.25 % produced highest absorption profile of insulin with a bioavailability of 40.23 ±1.29% and reduced blood glucose after its oral administration in rats.

    CONCLUSION: In conclusion, insulin oral delivery system containing alginate and chitosan as a coating material has the ability to protect the insulin from enzymatic degradation thus enhance its absorption in the intestine. However, more work should be done for instance to involve human study to materialise this delivery system for human use.

    Matched MeSH terms: Poloxamer
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links