Displaying publications 201 - 220 of 10188 in total

Abstract:
Sort:
  1. Klein PJ, Schneider R, Rhoads CJ
    Support Care Cancer, 2016 07;24(7):3209-22.
    PMID: 27044279 DOI: 10.1007/s00520-016-3201-7
    PURPOSE: This review (a) assesses the strength of evidence addressing Qigong therapy in supportive cancer care and (b) provides insights for definition of effective Qigong therapy in supportive cancer care.

    METHODS: This mixed-methods study includes (a) a systematic review of randomized clinical trials (RCTs) following PRISMA guidelines and (b) a constant-comparative qualitative analysis of effective intervention protocols.

    RESULTS: Eleven published randomized clinical trials were reviewed. A total of 831 individuals were studied. Geographic settings include the USA, Australia, China, Hong Kong, and Malaysia. Qigong therapy was found to have positive effects on the cancer-specific QOL, fatigue, immune function, and cortisol levels of individuals with cancer. Qigong therapy protocols varied supporting a plurality of styles. Qualitative analyses identified common programming constructs. Content constructs included exercise (gentle, integrated, repetitious, flowing, weight-bearing movements), breath regulation, mindfulness and meditation, energy cultivation including self-massage, and emphasis on relaxation. Logistic constructs included delivery by qualified instructors, home practice, and accommodation for impaired activity tolerance.

    CONCLUSIONS: There is global interest and a growing body of research providing evidence of therapeutic effect of Qigong therapy in supportive cancer care. While Qigong therapy protocols vary in style, construct commonalities do exist. Knowledge of the common constructs among effective programs revealed in this research may be used to guide future research intervention protocol and community programming design and development.

    Matched MeSH terms: Tai Ji/methods*; Qigong/methods*
  2. Sia AT
    Med J Malaysia, 1997 Dec;52(4):433-7.
    PMID: 10968123
    The anaesthetic experience in three patients undergoing thoracoscopic oesophagectomy is discussed. The indications for surgery and the premorbid states are outlined. The necessity for one-lung ventilation, with its attendant cardiopulmonary effects, the difficulty of patient access and the assessment of blood loss were the main problems encountered. Pulmonary morbidity was high in the post-operative period despite the avoidance of thoracotomy. Two patients developed persistent vocal cord paralysis. In conclusion, the role of thoracoscopic oesophagectomy needs further evaluation.
    Matched MeSH terms: Anesthesia/methods*; Esophagectomy/methods*
  3. Teo HC, Campos-Arceiz A, Li BV, Wu M, Lechner AM
    PLoS One, 2020;15(9):e0239009.
    PMID: 32932516 DOI: 10.1371/journal.pone.0239009
    International attention on the environmental impacts of China's Belt and Road Initiative (BRI) is increasing, but little is known internationally about the large corpus of Chinese BRI environmental research. We present the first systematic review of the Chinese and English-language BRI environmental research, supported with text mining and sentiment analysis. We found that the research is dominated by Chinese authors writing about BRI routes within China in Chinese, even though concerns around BRI are largely about impacts and benefits within host countries, and the volume of publications in English is recently catching up. Different disciplines and methods are well-represented across languages, apart from specific types of Chinese social science papers. The sentiments of academic research are largely neutral and less polarised than media discourse. We recommend that scientists and practitioners should pay more attention to BRI environmental impacts in developing countries and proactively engage local voices.
    Matched MeSH terms: Linguistics/methods*; Information Dissemination/methods*
  4. Gordon DE, Shun-Shion AS, Asnawi AW, Peden AA
    Methods Mol Biol, 2021;2233:115-129.
    PMID: 33222131 DOI: 10.1007/978-1-0716-1044-2_8
    Constitutive secretion is predominantly measured by collecting the media from cells and performing plate-based assays. This approach is particularly sensitive to changes in cell number, and a significant amount of effort has to be spent to overcome this. We have developed a panel of quantitative flow cytometry-based assays and reporter cell lines that can be used to measure constitutive secretion. These assays are insensitive to changes in cell number making them very robust and well suited to functional genomic and chemical screens. Here, we outline the key steps involved in generating and using these assays for studying constitutive secretion.
    Matched MeSH terms: Biological Assay/methods*; Flow Cytometry/methods*
  5. Wahib NB, Khandaker MU, Aqilah Binti Mohamad Ramli N, Sani SFA, Bradley DA
    Appl Radiat Isot, 2019 Jun;148:218-224.
    PMID: 31003071 DOI: 10.1016/j.apradiso.2019.04.001
    Study has been made of the thermoluminescence (TL) yield of various glass-based commercial kitchenware (Reko-China, Skoja-France, Godis-China, Glass Tum-Malaysia, Lodrat-France). Interest focuses on their potential for retrospective dosimetry. Use was made of a60Co gamma-ray irradiator, delivering doses in the range 2-10 Gy. Results for the various media show all the glassware brands to yield linearity of response against dose, with a lower limit of detection of ∼0.06 and ∼0.08 Gy for loose and compact powdered samples. Among all of the brands under study, the Lodrat glassware provides the greatest sensitivity, at 6.0 E+02 nC g-1 Gy-1 and 1.5E+03 nC g-1 Gy-1 for compact- and loose-powdered forms respectively. This is sufficiently sensitive to allow its use as a TL material for accident dosimetry (2 Gy being the threshold dose for the onset of a number of deterministic biological effects, including skin erythema and sterility). Energy Dispersive X-ray (EDX) analyses have been conducted, showing the presence of a number of impurities (including C, O, Na, Mg, Al, Si, Ca and Br). Fading of the irradiated glasses show the amount of better than 3% and 5% of the stored energy for both loose and compact powdered samples within 9 days post irradiation. As such, commercial kitchenware glass has the potential to act as relatively good TL material for gamma radiation dosimetry at accident levels. This is the first endeavour reporting the TL properties of low cost commercial kitchenware glasses for gamma-ray doses in the few Gy range, literature existing for doses from 8 Gy to 200 Gy.
    Matched MeSH terms: Radiometry/methods*; Thermoluminescent Dosimetry/methods*
  6. Abdul-Hamid NA, Abas F, Maulidiani M, Ismail IS, Tham CL, Swarup S, et al.
    Anal Biochem, 2019 07 01;576:20-32.
    PMID: 30970239 DOI: 10.1016/j.ab.2019.04.001
    The variation in the extracellular metabolites of RAW 264.7 cells obtained from different passage numbers (passage 9, 12 and 14) was examined. The impact of different harvesting protocols (trypsinization and scraping) on recovery of intracellular metabolites was then assessed. The similarity and variation in the cell metabolome was investigated using 1H NMR metabolic profiling modeled using multivariate data analysis. The characterization and quantification of metabolites was performed to determine the passage-related and harvesting-dependent effects on impacted metabolic networks. The trypsinized RAW cells from lower passages gave higher intensities of most identified metabolites, including asparagine, serine and tryptophan. Principal component analysis revealed variation between cells from different passages and harvesting methods, as indicated by the formation of clusters in score plot. Analysis of S-plots revealed metabolites that acted as biomarkers in discriminating cells from different passages including acetate, serine, lactate and choline. Meanwhile lactate, glutamine and pyruvate served as biomarkers for differentiating trypsinized and scraped cells. In passage-dependent effects, glycolysis and TCA cycle were influential, whereas glycerophospholipid metabolism was affected by the harvesting method. Overall, it is proposed that typsinized RAW cells from lower passage numbers are more appropriate when conducting experiments related to NMR metabolomics.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/methods*; Metabolomics/methods*
  7. Teh GC
    Urol Oncol, 2010 Nov-Dec;28(6):682-5.
    PMID: 21062652 DOI: 10.1016/j.urolonc.2010.03.017
    With maturing functional and oncologic outcomes data, open partial nephrectomy (OPN) has become the standard of care for T1a renal tumor. Laparoscopic approach can provide a speedier recovery with less blood loss and postoperative pain. Presuming adequate laparoscopic expertise, laparoscopic partial nephrectomy can provide equivalent oncologic outcome as for OPN albeit with higher urologic complications rate and longer warm ischemia time. With refinement of technique and use of robotic assistant, the shortcomings of laparoscopic approach can be further reduced. This article is a mini-review on the current status of laparoscopic approach to partial nephrectomy in the management of small renal mass.
    Matched MeSH terms: Nephrectomy/methods*; Laparoscopy/methods*
  8. Patrick Engkasan J, Rizzo JR, Levack W, Annaswamy TM
    Am J Phys Med Rehabil, 2020 11;99(11):1072-1073.
    PMID: 32576745 DOI: 10.1097/PHM.0000000000001508
    Matched MeSH terms: Physical and Rehabilitation Medicine/methods*; Evidence-Based Medicine/methods*
  9. John AS, Sidek MM, Thang LY, Sami S, Tey HY, See HH
    J Chromatogr A, 2021 Feb 08;1638:461868.
    PMID: 33453653 DOI: 10.1016/j.chroma.2020.461868
    One of the major drawbacks of electrophoresis in both capillary and microchip is the unsatisfactory sensitivity. Online sample preconcentration techniques can be regarded as the most common and powerful approaches commonly applied to enhance overall detection sensitivity. While the advances of various online preconcentration strategies in capillary and microchip employing aqueous background electrolytes are well-reviewed, there has been limited discussion of the feasible preconcentration techniques specifically developed for capillary and microchip using nonaqueous background electrolytes. This review provides the first consolidated overview of various online preconcentration techniques in nonaqueous capillary and microchip electrophoresis, covering the period of the last two decades. It covers developments in the field of sample stacking, isotachophoresis, and micellar-based stacking. Attention is also given to multi-stacking strategies that have been used for nonaqueous electrophoresis.
    Matched MeSH terms: Electrophoresis, Capillary/methods*; Electrophoresis, Microchip/methods*
  10. Shoaib MA, Hossain MB, Hum YC, Chuah JH, Mohd Salim MI, Lai KW
    Curr Med Imaging, 2020;16(6):739-751.
    PMID: 32723246 DOI: 10.2174/1573405615666190903143330
    BACKGROUND: Ultrasound (US) imaging can be a convenient and reliable substitute for magnetic resonance imaging in the investigation or screening of articular cartilage injury. However, US images suffer from two main impediments, i.e., low contrast ratio and presence of speckle noise.

    AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details.

    METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented.

    RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects.

    CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.

    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*; Ultrasonography/methods*
  11. Chidambaram R
    JNMA J Nepal Med Assoc, 2016 12 10;54(201):46-54.
    PMID: 27935913
    Forensic odontology is a sub-discipline of dental science which involves the relationship between dentistry and the law. The specialty of forensic odontology is applied in radiographic investigation, human bite marks analysis, anthropologic examination and during mass disasters. Besides the fact that radiographs require pretentious laboratory, it is still claimed to be a facile, rapid, non-invasive method of age identification in the deceased. The budding DNA technology has conquered the traditional procedures and currently being contemplated as chief investigating tool in revealing the hidden mysteries of victims and suspects, especially in hopeless circumstances. Forensic odontology has played a chief role in solving cold cases and proved to be strong evidence in the court of law. Systematic collection of dental records and preservation of the same would marshal the legal officials in identification of the deceased. To serve the forensic operation and legal authorities, dental professionals need to be familiar with the basics of forensic odontology, which would create a consciousness to preserve the dental data. The aim of this paper is to emphasize the vital applications of forensic odontology in medico-legal issues. Conjointly the recent advancements applied in forensic human identification have been updated.
    Matched MeSH terms: Forensic Dentistry/methods*; Forensic Anthropology/methods*
  12. Babajide Mustapha I, Saeed F
    Molecules, 2016 Jul 28;21(8).
    PMID: 27483216 DOI: 10.3390/molecules21080983
    Following the explosive growth in chemical and biological data, the shift from traditional methods of drug discovery to computer-aided means has made data mining and machine learning methods integral parts of today's drug discovery process. In this paper, extreme gradient boosting (Xgboost), which is an ensemble of Classification and Regression Tree (CART) and a variant of the Gradient Boosting Machine, was investigated for the prediction of biological activity based on quantitative description of the compound's molecular structure. Seven datasets, well known in the literature were used in this paper and experimental results show that Xgboost can outperform machine learning algorithms like Random Forest (RF), Support Vector Machines (LSVM), Radial Basis Function Neural Network (RBFN) and Naïve Bayes (NB) for the prediction of biological activities. In addition to its ability to detect minority activity classes in highly imbalanced datasets, it showed remarkable performance on both high and low diversity datasets.
    Matched MeSH terms: Drug Discovery/methods*; Data Mining/methods*
  13. Alsharif AM, Tan GH, Choo YM, Lawal A
    J Chromatogr Sci, 2017 03 01;55(3):378-391.
    PMID: 27903555 DOI: 10.1093/chromsci/bmw188
    Hollow fiber liquid-phase microextraction (HF-LPME) techniques coupled to chromatographic systems have been widely used for extraction and determination of diverse compounds. HF-LPME was able to provide better results in precision, accuracy, selectivity and enrichment factor, in addition to reduction of matrix effect and carry over. It is applicable within a wide pH range and compatible with most analytical instruments which enable the utilization of HF-LPME in a wide variety of applications. This review focused on the modified HF-LPME techniques, efficiency, comparison to other LPME methods and applications.
    Matched MeSH terms: Chromatography, Liquid/methods*; Liquid Phase Microextraction/methods*
  14. Faust O, Acharya UR, Sudarshan VK, Tan RS, Yeong CH, Molinari F, et al.
    Phys Med, 2017 Jan;33:1-15.
    PMID: 28010920 DOI: 10.1016/j.ejmp.2016.12.005
    The diagnosis of Coronary Artery Disease (CAD), Myocardial Infarction (MI) and carotid atherosclerosis is of paramount importance, as these cardiovascular diseases may cause medical complications and large number of death. Ultrasound (US) is a widely used imaging modality, as it captures moving images and image features correlate well with results obtained from other imaging methods. Furthermore, US does not use ionizing radiation and it is economical when compared to other imaging modalities. However, reading US images takes time and the relationship between image and tissue composition is complex. Therefore, the diagnostic accuracy depends on both time taken to read the images and experience of the screening practitioner. Computer support tools can reduce the inter-operator variability with lower subject specific expertise, when appropriate processing methods are used. In the current review, we analysed automatic detection methods for the diagnosis of CAD, MI and carotid atherosclerosis based on thoracic and Intravascular Ultrasound (IVUS). We found that IVUS is more often used than thoracic US for CAD. But for MI and carotid atherosclerosis IVUS is still in the experimental stage. Furthermore, thoracic US is more often used than IVUS for computer aided diagnosis systems.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*; Ultrasonography/methods*
  15. Rossi-Fedele G, Ahmed HM
    J Endod, 2017 Apr;43(4):520-526.
    PMID: 28214018 DOI: 10.1016/j.joen.2016.12.008
    INTRODUCTION: The removal of obturation materials from the root canal system is a primary objective in root canal retreatment procedures. This systematic review aims to discuss the effectiveness of different instrumentation procedures in removing root-canal filling materials assessed by micro-computed tomography.

    METHODS: An electronic search in PubMed and major endodontic journals was conducted using appropriate key words to identify investigations that examined the effectiveness of obturation material removal assessed by micro-computed tomography.

    RESULTS: Among 345 studies, 22 satisfied the inclusion criteria. Seven studies compared hand instrumentation with Nickel-Titanium rotary or reciprocating systems. Three studies investigated rotary systems, and another three studies explored reciprocation. Eight studies compared rotary systems and reciprocation in removing filling materials from the root canal system. Other factors, such as the role of solvents and irrigant agitation, were discussed.

    CONCLUSIONS: The application of different instrumentation protocols can effectively, but not completely, remove the filling materials from the root canal system. Only hand instrumentation was not associated with iatrogenic errors. Reciprocating and rotary systems exhibited similar abilities in removing root filling material. Retreatment files performed similarly to conventional ones. Solvents enhanced penetration of files but hindered cleaning of the root canal. The role of irrigant agitation was determined as controversial.

    Matched MeSH terms: Root Canal Obturation/methods*; Retreatment/methods
  16. Alanazi HO, Abdullah AH, Qureshi KN, Ismail AS
    Ir J Med Sci, 2018 May;187(2):501-513.
    PMID: 28756541 DOI: 10.1007/s11845-017-1655-3
    INTRODUCTION: Information and communication technologies (ICTs) have changed the trend into new integrated operations and methods in all fields of life. The health sector has also adopted new technologies to improve the systems and provide better services to customers. Predictive models in health care are also influenced from new technologies to predict the different disease outcomes. However, still, existing predictive models have suffered from some limitations in terms of predictive outcomes performance.

    AIMS AND OBJECTIVES: In order to improve predictive model performance, this paper proposed a predictive model by classifying the disease predictions into different categories. To achieve this model performance, this paper uses traumatic brain injury (TBI) datasets. TBI is one of the serious diseases worldwide and needs more attention due to its seriousness and serious impacts on human life.

    CONCLUSION: The proposed predictive model improves the predictive performance of TBI. The TBI data set is developed and approved by neurologists to set its features. The experiment results show that the proposed model has achieved significant results including accuracy, sensitivity, and specificity.

    Matched MeSH terms: Delivery of Health Care/methods*; Medicine/methods*
  17. Gandhamal A, Talbar S, Gajre S, Razak R, Hani AFM, Kumar D
    Comput Biol Med, 2017 Sep 01;88:110-125.
    PMID: 28711767 DOI: 10.1016/j.compbiomed.2017.07.008
    Knee osteoarthritis (OA) progression can be monitored by measuring changes in the subchondral bone structure such as area and shape from MR images as an imaging biomarker. However, measurements of these minute changes are highly dependent on the accurate segmentation of bone tissue from MR images and it is challenging task due to the complex tissue structure and inadequate image contrast/brightness. In this paper, a fully automated method for segmenting subchondral bone from knee MR images is proposed. Here, the contrast of knee MR images is enhanced using a gray-level S-curve transformation followed by automatic seed point detection using a three-dimensional multi-edge overlapping technique. Successively, bone regions are initially extracted using distance-regularized level-set evolution followed by identification and correction of leakages along the bone boundary regions using a boundary displacement technique. The performance of the developed technique is evaluated against ground truths by measuring sensitivity, specificity, dice similarity coefficient (DSC), average surface distance (AvgD) and root mean square surface distance (RMSD). An average sensitivity (91.14%), specificity (99.12%) and DSC (90.28%) with 95% confidence interval (CI) in the range 89.74-92.54%, 98.93-99.31% and 88.68-91.88% respectively is achieved for the femur bone segmentation in 8 datasets. For tibia bone, average sensitivity (90.69%), specificity (99.65%) and DSC (91.35%) with 95% CI in the range 88.59-92.79%, 99.50-99.80% and 88.68-91.88% respectively is achieved. AvgD and RMSD values for femur are 1.43 ± 0.23 (mm) and 2.10 ± 0.35 (mm) respectively while for tibia, the values are 0.95 ± 0.28 (mm) and 1.30 ± 0.42 (mm) respectively that demonstrates acceptable error between proposed method and ground truths. In conclusion, results obtained in this work demonstrate substantially significant performance with consistency and robustness that led the proposed method to be applicable for large scale and longitudinal knee OA studies in clinical settings.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*; Imaging, Three-Dimensional/methods*
  18. Subudhi A, Acharya UR, Dash M, Jena S, Sabut S
    Comput Biol Med, 2018 12 01;103:116-129.
    PMID: 30359807 DOI: 10.1016/j.compbiomed.2018.10.016
    It is difficult to develop an accurate algorithm to detect the stroke lesions using magnetic resonance imaging (MRI) images due to variation in different lesion sizes, variation in morphological structure, and similarity in intensity of lesion with normal brain in three types of stroke, namely partial anterior circulation syndrome (PACS), lacunar syndrome (LACS) and total anterior circulation stroke (TACS). In this paper, we have integrated the advantages of Delaunay triangulation (DT) and fractional order Darwinian particle swarm optimization (FODPSO), called DT-FODPSO technique for automatic segmentation of the structure of the stroke lesion. The approach was validated on 192 MRI images obtained from different stroke subjects. Statistical and morphological features were extracted and classified according to the Oxfordshire community stroke project (OCSP) using support vector machine (SVM) and random forest (RF) classifiers. The method effectively detected the stroke lesions and achieved promising results with an average sensitivity of 0.93, accuracy of 0.95, JI of 0.89 and Dice similarity index of 0.93 using RF classifier. These promising results indicates the DT based optimized approach is efficient in detecting ischemic stroke and it can aid the neuro-radiologists to validate their routine screening.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*; Magnetic Resonance Imaging/methods*
  19. Aziz F, Arof H, Mokhtar N, Shah NM, Khairuddin ASM, Hanafi E, et al.
    PLoS One, 2018;13(8):e0202092.
    PMID: 30157219 DOI: 10.1371/journal.pone.0202092
    In this paper, an image-based waste collection scheduling involving a node with three waste bins is considered. First, the system locates the three bins and determines the waste level of each bin using four Laws Masks and a set of Support Vector Machine (SVM) classifiers. Next, a Hidden Markov Model (HMM) is used to decide on the number of days remaining before waste is collected from the node. This decision is based on the HMM's previous state and current observations. The HMM waste collection scheduling seeks to maximize the number of days between collection visits while preventing waste contamination due to late collection. The proposed system was trained using 100 training images and then tested on 100 test images. Each test image contains three bins that might be shifted, rotated, occluded or toppled over. The upright bins could be empty, partially full or full of garbage of various shapes and sizes. The method achieves bin detection, waste level classification and collection day scheduling rates of 100%, 99.8% and 100% respectively.
    Matched MeSH terms: Refuse Disposal/methods; Waste Management/methods*
  20. Short CE, DeSmet A, Woods C, Williams SL, Maher C, Middelweerd A, et al.
    J Med Internet Res, 2018 11 16;20(11):e292.
    PMID: 30446482 DOI: 10.2196/jmir.9397
    Engagement in electronic health (eHealth) and mobile health (mHealth) behavior change interventions is thought to be important for intervention effectiveness, though what constitutes engagement and how it enhances efficacy has been somewhat unclear in the literature. Recently published detailed definitions and conceptual models of engagement have helped to build consensus around a definition of engagement and improve our understanding of how engagement may influence effectiveness. This work has helped to establish a clearer research agenda. However, to test the hypotheses generated by the conceptual modules, we need to know how to measure engagement in a valid and reliable way. The aim of this viewpoint is to provide an overview of engagement measurement options that can be employed in eHealth and mHealth behavior change intervention evaluations, discuss methodological considerations, and provide direction for future research. To identify measures, we used snowball sampling, starting from systematic reviews of engagement research as well as those utilized in studies known to the authors. A wide range of methods to measure engagement were identified, including qualitative measures, self-report questionnaires, ecological momentary assessments, system usage data, sensor data, social media data, and psychophysiological measures. Each measurement method is appraised and examples are provided to illustrate possible use in eHealth and mHealth behavior change research. Recommendations for future research are provided, based on the limitations of current methods and the heavy reliance on system usage data as the sole assessment of engagement. The validation and adoption of a wider range of engagement measurements and their thoughtful application to the study of engagement are encouraged.
    Matched MeSH terms: Health Promotion/methods*; Telemedicine/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links