Methods: In this study, comparative genome analysis was carried out using the G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme (CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed for gene identification in G. boninense NJ3 and the produced protein sequences were analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma sp. and five selected pathogenic fungi for CAZymes characterization. Functional annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) and was used for selecting candidate PHI genes related to cell wall degradation of G. boninense NJ3.
Results: G. boninense was enriched with CAZymes and CWDEs in a similar fashion to G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related fungal strains. The role of polysaccharide and cell wall degrading enzymes in the hemibiotrophic mode of infection of G. boninense was investigated by analyzing the fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa. Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and laccase were identified as potential CWDEs that contribute to the plant host interaction and pathogenesis.
Discussion: This study employed bioinformatics tools for providing a greater understanding of the biological mechanisms underlying the production of CAZymes in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and lignocellulosic-degrading enzymes would further facilitate in elucidating the infection mechanisms through the production of CWDEs by G. boninense. Identification of CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for functional studies of genes associated with the fungal virulence and pathogenicity using systems biology and genetic engineering approaches.
METHODS: The parameters of spray-dried 'cempedak' fruit powder under study include inlet air temperature (140-180°C) and maltodextrin (DE 10) concentrations (5-15% w/w). Response surface methodology involving 14 runs was used to assess the effects of inlet temperature and maltodextrin on the powder flow properties and reconstitution properties of the spray-dried 'cempedak' powder.
RESULTS: Out of the tested responses, only bulk density, change in cake height ratio, and water solubility index had a high coefficient of determination value. Inlet air temperature was found to be the main parameter to affect the bulk density, caking and water solubility index, when compared to maltodextrin concentration. By setting minimization of caking and maximization of water solubility index as the main determinants, the optimal parameters of 160°C inlet temperature and 15% (w/w) maltodextrin DE10 were generated, with a desirability of 0.697.
CONCLUSIONS: The powder produced under optimal conditions (160°C and 15% w/w maltodextrin) had a low bulk density (480.01 kg/m3), low caking properties (0.17 change in cake height ratio), and a high solubility index (88.69). This indicates that the powder is stable to be stored (without caking) and will have good reconstitution when added to water.