Displaying publications 201 - 220 of 597 in total

Abstract:
Sort:
  1. Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T
    Bioresour Technol, 2017 Nov;244(Pt 1):941-948.
    PMID: 28847084 DOI: 10.1016/j.biortech.2017.08.043
    This work aimed to develop an efficient microwave-hydrothermal (MH) extraction of malic acid from abundant natural cactus as hydrogen bond donor (HBD) whereby the concentration was optimized using response surface methodology. The ideal process conditions were found to be at a solvent-to-feed ratio of 0.008, 120°C and 20min with 1.0g of oxidant, H2O2. Next generation environment-friendly solvents, low transition temperature mixtures (LTTMs) were synthesized from cactus malic acid with choline chloride (ChCl) and monosodium glutamate (MSG) as hydrogen bond acceptors (HBAs). The hydrogen-bonding interactions between the starting materials were determined. The efficiency of the LTTMs in removing lignin from oil palm biomass residues, empty fruit bunch (EFB) was also evaluated. The removal of amorphous hemicellulose and lignin after the pretreatment process resulted in an enhanced digestibility and thermal degradability of biomass.
    Matched MeSH terms: Solvents
  2. Zhan SZ, Li M, Zheng J, Wang QJ, Ng SW, Li D
    Inorg Chem, 2017 Nov 06;56(21):13446-13455.
    PMID: 29023107 DOI: 10.1021/acs.inorgchem.7b02144
    Six daughter complexes based on two-dimensional (2-D) luminescent Cu4I4-Cu3Pz3(Pz = pyrazolate) coordination networks, which exhibit an uncommon Cu4I4L3L' (L = pyridine; L' = acetonitrile, pyridine, pyrazine, 1,4-diazabicyclo[2.2.2]octane, triphenylphosphine, none) local configuration, were prepared through a postsynthetic modification method starting from a parent complex (L' = NH3). This work has successfully implemented the single-site substitution of Cu4I4-based coordination frameworks, which have rarely been reported for isolated Cu4I4-type compounds, by taking advantage of the solvent-assisted ligand substitution strategy recently developed in metal-organic framework (MOF) chemistry. Such a procedure not only resulted in the variation of local geometry in the Cu4I4units but also led to interlayer network displacement and entanglement. Particularly, an interesting topological transformation (from 2-D to 2-D → 3-D interpenetration) occurred when linear bidentate linkers (e.g., pyrazine and 1,4-diazabicyclo[2.2.2]octane) are inserted between the 2-D layers. Moreover, the variation in the L' sites can effectively tune the emission colors, ranging from green to orange (λemmax540-605 nm at room temperature). The photoluminescence origins are tentatively assigned to be a mixture of3MLCT and3XLCT, different from that of the well-studied isolated Cu4I4-type complexes.
    Matched MeSH terms: Solvents
  3. Chong YT, Mohd Ariffin M, Mohd Tahir N, Loh SH
    Talanta, 2018 Jan 01;176:558-564.
    PMID: 28917790 DOI: 10.1016/j.talanta.2017.08.068
    Electro-mediated microextraction (EMM) combined with micro-high performance liquid chromatography-ultraviolet detection was successfully developed for the determination of selected phenols, namely 4-chlorophenol (4CP), 2-nitrophenol (2NP) and 2,4-dichlorophenols (2,4 DCP) in water. A solvent-impregnated agarose gel disc was utilized as a solvent holder in this study. Under optimum extraction conditions, the method showed good linearity in the range of 0.1-250µgL-1, 0.3-250µgL-1and 0.2-500µgL-1for 4CP, 2NP and 2,4 DCP, respectively with correlation coefficients of ≥ 0.9975, ultra-trace LODs (0.03-0.1µgL-1) and satisfactory relative recovery average (85.0-114.1%) for the analysis of selected phenols. The proposed method was rapid and eco-friendly as the solvent holder was constructed using minute amounts of extraction solvent immobilized within the biodegradable agarose gel disc. A comparative microextraction technique termed solvent-impregnated agarose gel liquid phase microextraction (AG-LPME) was re-optimized and validated for the extraction of phenols in water. The method offered good linearity, ultra-trace LODs ranging 0.1-0.5µgL-1and satisfactory average of relative recovery (86.1-114.1%). The EMM was superior in terms of sensitivity and time-effectiveness compared to AG-LPME. Both techniques combine extraction and pre-concentration in mini-scaled approaches using an eco-friendly solvent holder that fulfil the green chemistry concept.
    Matched MeSH terms: Solvents
  4. Abed KM, Hayyan A, Elgharbawy AAM, Hizaddin HF, Hashim MA, Hasan HA, et al.
    Molecules, 2022 Dec 09;27(24).
    PMID: 36557866 DOI: 10.3390/molecules27248734
    This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.
    Matched MeSH terms: Solvents
  5. Jalilian Ahmadkalaei SP, Gan S, Ng HK, Abdul Talib S
    Environ Sci Pollut Res Int, 2017 Jul;24(21):17779-17789.
    PMID: 28602003 DOI: 10.1007/s11356-017-9382-x
    Due to the health and environmental risks posed by the presence of petroleum-contaminated areas around the world, remediation of petroleum-contaminated soil has drawn much attention from researchers. Combining Fenton reaction with a solvent has been proposed as a novel way to remediate contaminated soils. In this study, a green solvent, ethyl lactate (EL), has been used in conjunction with Fenton's reagents for the remediation of diesel-contaminated soil. The main aim of this research is to determine how the addition of EL affects Fenton reaction for the destruction of total petroleum hydrocarbons (TPHs) within the diesel range. Specifically, the effects of different parameters, including liquid phase volume-to-soil weight (L/S) ratio, hydrogen peroxide (H2O2) concentration and EL% on the removal efficiency, have been studied in batch experiments. The results showed that an increase in H2O2 resulted in an increase in removal efficiency of TPH from 68.41% at H2O2 = 0.1 M to 90.21% at H2O2 = 2 M. The lowest L/S, i.e. L/S = 1, had the highest TPH removal efficiency of 85.77%. An increase in EL% up to 10% increased the removal efficiency to 96.74% for TPH, and with further increase in EL%, the removal efficiency of TPH decreased to 89.6%. EL with an optimum value of 10% was found to be best for TPH removal in EL-based Fenton reaction. The power law and pseudo-first order equations fitted well to the experimental kinetic data of Fenton reactions.
    Matched MeSH terms: Solvents
  6. Kumar M, Kumar D, Chopra S, Mahmood S, Bhatia A
    Curr Pharm Des, 2023;29(44):3532-3545.
    PMID: 38151837 DOI: 10.2174/0113816128282478231219044000
    BACKGROUND: Over the past ten years, tremendous progress has been made in microbubble-based research for a variety of biological applications. Microbubbles emerged as a compelling and dynamic tool in modern drug delivery systems. They are employed to deliver drugs or genes to targeted regions of interest, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials.

    OBJECTIVE: The objective of this article is to review the microbubble compositions and physiochemical characteristics in relation to the development of innovative biomedical applications, with a focus on molecular imaging and targeted drug/gene delivery.

    METHODS: The microbubbles are prepared by using various methods, which include cross-linking polymerization, emulsion solvent evaporation, atomization, and reconstitution. In cross-linking polymerization, a fine foam of the polymer is formed, which serves as a bubble coating agent and colloidal stabilizer, resulting from the vigorous stirring of a polymeric solution. In the case of emulsion solvent evaporation, there are two solutions utilized in the production of microbubbles. In atomization and reconstitution, porous spheres are created by atomising a surfactant solution into a hot gas. They are encapsulated in primary modifier gas. After the addition of the second gas or gas osmotic agent, the package is placed into a vial and sealed after reconstituting with sterile saline solution.

    RESULTS: Microbubble-based drug delivery is an innovative approach in the field of drug delivery that utilizes microbubbles, which are tiny gas-filled bubbles, act as carriers for therapeutic agents. These microbubbles can be loaded with drugs, imaging agents, or genes and then guided to specific target sites.

    CONCLUSION: The potential utility of microbubbles in biomedical applications is continually growing as novel formulations and methods. The versatility of microbubbles allows for customization, tailoring the delivery system to various medical applications, including cancer therapy, cardiovascular treatments, and gene therapy.

    Matched MeSH terms: Solvents
  7. Yan B, Huang ZA, Yahaya N, Chen DDY
    PMID: 32531643 DOI: 10.1016/j.jchromb.2020.122216
    Enantioselective analysis is critically important in the pharmaceutical and agricultural industries. However, most of the methods reported were developed for the analysis of pure racemates acquired from chemical synthesis or purification. Direct analysis of chiral enantiomers in complex matrices has rarely been reported. This work demonstrated capillary electrophoresis-mass spectrometry (CE-MS) for the enantioselective analysis of botanical drugs for the first time, using a widely used botanical drug, Corydalis Rhizoma, as an example. The method was used for the simultaneous enantioselective analysis of dl-tetrahydropalmatine and (RS)-tetrahydroberberine (canadine) in Corydalis Rhizoma extract. Using (2-hydroxypropyl)-β-cyclodextrin as the chiral selector, a partial filling technique was used to avoid signal suppression and contamination of the MS detector. Post column organic modifier was used to assist with ionization in the flow through microvial CE-MS interface, therefore, organic solvents was not used in the background electrolyte. The completely aqueous background electrolyte contributed to better chiral separations. The CE-MS method established here can directly determine the analytes in their complex matrix without any pre-purification steps, while also offering high sensitivity and low operational costs (including sample, chiral selector and solvent). In the method validation process, good linearity (r > 0.993), sensitivity and accuracy (recoveries within 89.1-110.0%) were demonstrated. The CE-MS technique was shown to be able to provide good selectivity for the simultaneous chiral separation of multiple pairs of enantiomers in complex matrices.
    Matched MeSH terms: Solvents
  8. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2007 Mar 30;72(7):2392-401.
    PMID: 17341117
    The rates of the hydrolyses of N-(o-hydroxyphenyl)phthalimide (1) and N-(o-methoxyphenyl)phthalimide (2), studied at different pH, show that the hydrolysis of 1 involves intramolecular general base (IGB) assistance where the o-O- group of ionized 1 acts as IGB and H2O as the reactant. The rate enhancement due to the IGB-assisted reaction of H2O with ionized 1 is>8x10(4)-fold. Pseudo-first-order rate constant for the reaction of water with 2 is approximately 2x10(3)-fold smaller than the first-order rate constant (0.10 s-1) for pH-independent hydrolysis of 1 within the pH range of 9.60-10.10. Second-order rate constants (kOH) for hydroxide ion-assisted hydrolysis of ionized 1 and 2 are 3.0 and 29.1 M-1 s-1, respectively. The solvent deuterium kinetic isotope effect (dKIE) on the rate of alkaline hydrolysis of 1 and 2 reveals that the respective values of kOH/kOD are 0.84 and 0.78, where kOD represents the second-order rate constant for DO--assisted cleavage of these imides (1 and 2). The value of kwH2O/kdD2O is 2.04, with kwH2O and kdD2O representing pseudo-first-order rate constants for the reactions of ionized 1 with H2O and D2O, respectively.
    Matched MeSH terms: Solvents
  9. Munusamy SM, Helen-Ng LC, Farook MS
    BMC Oral Health, 2024 Feb 01;24(1):162.
    PMID: 38302972 DOI: 10.1186/s12903-024-03905-7
    BACKGROUND: Computer-aided design/computer-aided manufacturing (CAD/CAM) dental composites were introduced with superior mechanical properties than conventional dental composites. However, little is known on effects of dietary solvents on microhardness or inorganic elemental composition of CAD/CAM composites.

    OBJECTIVES: The objectives of this study were to evaluate the degradation effects of each dietary solvent on the microhardness of the different CAD/CAM dental composites and to observe the degradation effects of dietary solvent on the inorganic elements of the dental composites investigated.

    METHODS: Fifty specimens with dimensions 12 mm x 14 mm x 1.5 mm were prepared for direct composite (Filtek Z350 XT [FZ]), indirect composite (Shofu Ceramage [CM]), and three CAD/CAM composites (Lava Ultimate [LU], Cerasmart [CS], and Vita Enamic [VE]). The specimens were randomly divided into 5 groups (n = 10) and conditioned for 1-week at 37°C in the following: air (control), distilled water, 0.02 N citric acid, 0.02 N lactic acid and 50% ethanol-water solution. Subsequently, the specimens were subjected to microhardness test (KHN) using Knoop hardness indenter. Air (control) and representative postconditioning specimens with the lowest mean KHN value for each material were analyzed using energy dispersive X-ray spectroscopy (EDX). Statistical analysis was done using one-way ANOVA and post hoc Bonferroni test at a significance level of p = 0.05.

    RESULTS: Mean KHN values ranged from 39.7 ± 2.7 kg/mm2 for FZ conditioned in 50% ethanol-water solution to 79.2 ± 3.4 kg/mm2 for VE conditioned in air (control). With exception to LU, significant differences were observed between materials and dietary solvents for other dental composites investigated. EDX showed stable peaks of the inorganic elements between air (control) and representative postconditioning specimens.

    CONCLUSIONS: The microhardness of dental composites was significantly affected by dietary solvents, except for one CAD/CAM composite [LU]. However, no changes were observed in the inorganic elemental composition of dental composites between air (control) and 1-week postconditioning.

    Matched MeSH terms: Solvents
  10. Moniruzzaman M, Rodríguez I, Rodríguez-Cabo T, Cela R, Sulaiman SA, Gan SH
    J Chromatogr A, 2014 Nov 14;1368:26-36.
    PMID: 25441341 DOI: 10.1016/j.chroma.2014.09.057
    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas.
    Matched MeSH terms: Solvents/chemistry
  11. Al-Alwani MA, Mohamad AB, Kadhum AA, Ludin NA
    PMID: 25483560 DOI: 10.1016/j.saa.2014.11.018
    Nine solvents, namely, n-hexane, ethanol, acetonitrile, chloroform, ethyl-ether, ethyl-acetate, petroleum ether, n-butyl alcohol, and methanol were used to extract natural dyes from Cordyline fruticosa, Pandannus amaryllifolius and Hylocereus polyrhizus. To improve the adsorption of dyes onto the TiO2 particles, betalain and chlorophyll dyes were mixed with methanol or ethanol and water at various ratios. The adsorption of the dyes mixed with titanium dioxide (TiO2) was also observed. The highest adsorption of the C.fruticosa dye mixed with TiO2 was achieved at ratio 3:1 of methanol: water. The highest adsorption of P.amaryllifolius dye mixed with TiO2 was observed at 2:1 of ethanol: water. H.polyrhizus dye extracted by water and mixed with TiO2 demonstrated the highest adsorption among the solvents. All extracted dye was adsorbed onto the surface of TiO2 based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The inhibition of crystallinity of TiO2 was likewise investigated by X-ray analysis. The morphological properties and composition of dyes were analyzed via SEM and EDX.
    Matched MeSH terms: Solvents/chemistry*
  12. Radzali SA, Baharin BS, Othman R, Markom M, Rahman RA
    J Oleo Sci, 2014;63(8):769-77.
    PMID: 25007745
    In recent years, astaxanthin is claimed to have a 10 times higher antioxidant activity than that of other carotenoids such as lutein, zeaxanthin, canthaxanthin, and β-carotene; the antioxidant activity of astaxanthin is 100 times higher than that of α-tocopherol. Penaeus monodon (tiger shrimp) is the largest commercially available shrimp species and its waste is a rich source of carotenoids such as astaxanthin and its esters. The efficient and environment-friendly recovery of astaxanthins was accomplished by using a supercritical fluid extraction (SFE) technique. The effects of different co-solvents and their concentrations on the yield and composition of the extract were investigated. The following co-solvents were studied prior to the optimization of the SFE technique: ethanol, water, methanol, 50% (v/v) ethanol in water, 50% (v/v) methanol in water, 70% (v/v) ethanol in water, and 70% (v/v) methanol in water. The ethanol extract produced the highest carotenoid yield (84.02 ± 0.8 μg/g) dry weight (DW) with 97.1% recovery. The ethanol extract also produced the highest amount of the extracted astaxanthin complex (58.03 ± 0.1 μg/g DW) and the free astaxanthin content (12.25 ± 0.9 μg/g DW) in the extract. Lutein and β-carotene were the other carotenoids identified. Therefore, ethanol was chosen for further optimization studies.
    Matched MeSH terms: Solvents*
  13. Hassan S, Duclaux L, Lévêque JM, Reinert L, Farooq A, Yasin T
    J Environ Manage, 2014 Nov 1;144:108-17.
    PMID: 24929502 DOI: 10.1016/j.jenvman.2014.05.005
    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.
    Matched MeSH terms: Solvents/chemistry*
  14. Ben-Hander GM, Makahleh A, Saad B, Saleh MI, Cheng KW
    Talanta, 2015 Jan;131:590-6.
    PMID: 25281145 DOI: 10.1016/j.talanta.2014.08.037
    A new analytical method for the simultaneous determination of the antidiabetic drugs rosiglitazone (ROS) and metformin hydrochloride (MH) with marked differences in their affinity towards organic solvents (log P of 2.4 and -1.43, respectively) was developed. Prior to the HPLC separation, the drugs were subjected to a sequential hollow fiber liquid phase microextraction (HF-LPME) procedure. Two sequential HF-LPME approaches were considered, the preferred one involves the use of two vials containing solution mixtures for the extraction of ROS (vial 1) and MH (vial 2), respectively, but using the same fiber and acceptor phase. Important parameters that affect the extraction efficiency such as extracting solvent, donor phase conditions, HCl concentration, agitation, extraction time, addition of salt, etc. were studied. Under the optimum conditions, good enrichment factors (EF, 471 and 86.6 for ROS and MH, respectively) were achieved. Calibration curves were linear over the range 1-500 (r(2)=0.998) and 5-2500 ng mL(-1) (r(2)=0.999) for ROS and MH, respectively. The relative standard deviation values (RSD%) for six replicates were below 8.4%. Detection and quantitation limits based on S/N ratio of 3 and 10 were 0.12, 1.0 and 0.36, 3.0 ng mL(-1) for ROS and MH, respectively. The proposed method is simple, sensitive and opens up new opportunities for the microextraction of analytes with contrasting properties.
    Matched MeSH terms: Solvents/chemistry
  15. Uddin MS, Sarker MZ, Ferdosh S, Akanda MJ, Easmin MS, Bt Shamsudin SH, et al.
    J Sci Food Agric, 2015 May;95(7):1385-94.
    PMID: 25048690 DOI: 10.1002/jsfa.6833
    Phytosterols provide important health benefits: in particular, the lowering of cholesterol. From environmental and commercial points of view, the most appropriate technique has been searched for extracting phytosterols from plant matrices. As a green technology, supercritical fluid extraction (SFE) using carbon dioxide (CO2) is widely used to extract bioactive compounds from different plant matrices. Several studies have been performed to extract phytosterols using supercritical CO2 (SC-CO2) and this technology has clearly offered potential advantages over conventional extraction methods. However, the efficiency of SFE technology fully relies on the processing parameters, chemistry of interest compounds, nature of the plant matrices and expertise of handling. This review covers SFE technology with particular reference to phytosterol extraction using SC-CO2. Moreover, the chemistry of phytosterols, properties of supercritical fluids (SFs) and the applied experimental designs have been discussed for better understanding of phytosterol solubility in SC-CO2.
    Matched MeSH terms: Solvents/chemistry*
  16. Teo CL, Idris A
    Bioresour Technol, 2014 Nov;171:477-81.
    PMID: 25201293 DOI: 10.1016/j.biortech.2014.08.024
    The types of microalgae strains and the method used in lipid extraction have become crucial factors which influence the productivity of crude oil. In this paper, Nannochloropsis sp. and Tetraselmis sp. were chosen as the strains and four different methods were used to extract the lipids: Hara and Radin, Folch, Chen and Bligh and Dyer. These methods were performed by using conventional heating and microwave irradiation methods. Results revealed that highest lipid yield from the different species was obtained using different extraction methods; both under microwave irradiation. The lipid yield for Tetraselmis sp. and Nannochloropsis sp. was highest when Hara and Radin (8.19%), and Folch (8.47%) methods were used respectively under microwave irradiation. The lipids extracted were then transesterified to biodiesel and the quality of the biodiesel was analyzed using the gas chromatography.
    Matched MeSH terms: Solvents/chemistry
  17. Woi PM, Bakar MA, Rosli AN, Lee VS, Ahmad MR, Zain S, et al.
    J Mol Model, 2014 May;20(5):2219.
    PMID: 24770548 DOI: 10.1007/s00894-014-2219-3
    DFT and G4 results reveal that cations display the following trends in imparting its positive charge to acrylonitrile; H⁺ > Li⁺ > Na⁺ > K⁺ for group I and Be²⁺ > Mg²⁺ > Ca²⁺ for group II. Solvation by water molecules and interaction with cation make the cyano bond more polarized and exhibits ketene-imine character. Bond order in nitrile-cation complexes has been predicted based on the s character of the covalent bond orbitals. Mulliken, CHELPG, and NPA charges are in good agreement in predicting positive charge buildup and GIAO nuclear deshileding on C1. G4 enthalpies show that Mg²⁺ is more strongly bound to acrylonitrile than to acetonitrile by 3 kcal mol⁻¹, and the proton affinity of the former is higher by 0.8 kcal mol⁻¹. G4 enthalpies of reductions support prior experimental observation that metalated conjugated nitriles show enhanced reactivity toward weak nucleophiles to afford Michael addition products.
    Matched MeSH terms: Solvents/chemistry
  18. Jumbri K, Abdul Rahman MB, Abdulmalek E, Ahmad H, Micaelo NM
    Phys Chem Chem Phys, 2014 Jul 21;16(27):14036-46.
    PMID: 24901033 DOI: 10.1039/c4cp01159g
    Molecular dynamics simulation and biophysical analysis were employed to reveal the characteristics and the influence of ionic liquids (ILs) on the structural properties of DNA. Both computational and experimental evidence indicate that DNA retains its native B-conformation in ILs. Simulation data show that the hydration shells around the DNA phosphate group were the main criteria for DNA stabilization in this ionic media. Stronger hydration shells reduce the binding ability of ILs' cations to the DNA phosphate group, thus destabilizing the DNA. The simulation results also indicated that the DNA structure maintains its duplex conformation when solvated by ILs at different temperatures up to 373.15 K. The result further suggests that the thermal stability of DNA at high temperatures is related to the solvent thermodynamics, especially entropy and enthalpy of water. All the molecular simulation results were consistent with the experimental findings. The understanding of the properties of IL-DNA could be used as a basis for future development of specific ILs for nucleic acid technology.
    Matched MeSH terms: Solvents/chemistry
  19. Soheilmoghaddam M, Wahit MU, Tuck Whye W, Ibrahim Akos N, Heidar Pour R, Ali Yussuf A
    Carbohydr Polym, 2014 Jun 15;106:326-34.
    PMID: 24721086 DOI: 10.1016/j.carbpol.2014.02.085
    Bionanocomposite films based on regenerated cellulose (RC) and incorporated with zeolite at different concentrations were fabricated by dissolving cellulose in 1-ethyl-3-methylimidazolium chloride (EMIMCl) ionic liquid using a simple green method. The interactions between the zeolite and the cellulose matrix were confirmed by Fourier transform infrared spectra. Mechanical properties of the nanocomposite films significantly improved as compared with the pure regenerated cellulose film, without the loss of extensibility. Zeolite incorporation enhanced the thermal stability and char yield of the nanocomposites. The scanning electron microscopy and transmission electron microscopy showed that zeolite was uniformly dispersed in the regenerated cellulose matrix. In vitro cytotoxicity test demonstrated that both RC and RC/zeolite nanocomposite films are cytocompatible. These results indicate that the prepared nanocomposites have potential applications in biodegradable packaging, membranes and biomedical areas.
    Matched MeSH terms: Solvents/chemistry
  20. Adib AM, Jamaludin F, Kiong LS, Hashim N, Abdullah Z
    J Pharm Biomed Anal, 2014 Aug 5;96:104-10.
    PMID: 24727283 DOI: 10.1016/j.jpba.2014.03.022
    Baeckea frutescens or locally known as Cucur atap is used as antibacterial, antidysentery, antipyretic and diuretic agent. In Malaysia and Indonesia, they are used as an ingredient of the traditional medicine given to mothers during confinement. A three-steps infra-red (IR) macro-fingerprinting method combining conventional IR spectra, and the secondary derivative spectra with two dimensional infrared correlation spectroscopy (2D-IR) have been proved to be effective methods to examine a complicated mixture such as herbal medicines. This study investigated the feasibility of employing multi-steps IR spectroscopy in order to study the main constituents of B. frutescens and its different extracts (extracted by chloroform, ethyl acetate, methanol and aqueous in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. The structural information of the samples indicated that B. frutescens and its extracts contain a large amount of flavonoids, since some characteristic absorption peaks of flavonoids, such as ∼1600cm(-1), ∼1500cm(-1), ∼1450cm(-1), and ∼1270cm(-1) can be observed. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.
    Matched MeSH terms: Solvents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links