Manganese has recently been a topic of interest among researchers, particularly when 1,752 million tonnes of manganese are expected to be produced by the steel industry in 2020. Manganese discharges from industrial effluents have increased manganese contamination in water sources. Its concentrations of more than 0.2 mg/L in the water sources could have negative impacts on human health and the aquatic ecosystem. Thereby, the available water treatment processes face challenges in effectively removing manganese at low cost. In response to these challenges, adsorption has emerged as one of the most practical water treatment processes for manganese removal. In particular, agricultural waste adsorbents received a lot of attention owing to their low cost and high efficiency (99%) in the removal of manganese. Therefore, this paper reviews the removal of manganese by adsorption process using agricultural waste adsorbents. The factors affecting the adsorption process, the mechanisms, and the performances of the adsorbents are elucidated in detail.
The discharge of improperly treated oil/water emulsion by industries imposes detrimental effects on human health and the environment. The membrane process is a promising technology for oil/water emulsion treatment. However, it faces the challenge of being maintaining due to membrane fouling. It occurs as a result of the strong interaction between the hydrophobic oil droplets and the hydrophobic membrane surface. This issue has attracted research interest in developing the membrane material that possesses high hydraulic and fouling resistance performances. This research explores the vapor-induced phase separation (VIPS) method for the fabrication of a hydrophilic polysulfone (PSF) membrane with the presence of polyethylene glycol (PEG) as the additive for the treatment of oil/water emulsion. Results show that the slow nonsolvent intake in VIPS greatly influences the resulting membrane structure that allows the higher retention of the additive within the membrane matrix. By extending the exposure time of the cast film under humid air, both surface chemistry and morphology of the resulting membrane can be enhanced. By extending the exposure time from 0 to 60 s, the water contact angle decreases from 70.28 ± 0.61° to 57.72 ± 0.61°, and the clean water permeability increases from 328.70 ± 8.27 to 501.89 ± 8.92 (L·m-2·h-1·bar-1). Moreover, the oil rejection also improves from 85.06 ± 1.6 to 98.48 ± 1.2%. The membrane structure was transformed from a porous top layer with a finger-like macrovoid sub-structure to a relatively thick top layer with a sponge-like macrovoid-free sub-structure. Overall results demonstrate the potential of the VIPS process to enhance both surface chemistry and morphology of the PSF membrane.
This article provides data regarding the performance of zinc sulphate as a coagulant for treating rubber industry wastewater. The effect of four factors on removal efficiency of nine parameters is investigated, namely: pH, mixing speed, dosage of coagulant (zinc sulphate) and retention time. Response surface methodology was used to investigate the effect of selected variables. The data obtained from face centered composite design (FCCD) were analyzed by using analysis of variance (ANOVA) and regression model to find the optimum operating conditions for the selected factors.
Forward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling. Membrane fouling may require simple shear force and physical cleaning for sufficient recovery of membrane performance. Severe fouling may need chemical cleaning, especially when a slimy biofilm or severe microbial colony is formed. Modification of FO membrane through introducing zwitterionic moieties on the membrane surface has been proven to enhance antifouling property. In addition, it could also significantly improve the separation efficiency and longevity of the membrane. Zwitterion moieties can also incorporate in draw solution as electrolytes in FO process. It could be in a form of a monomer or a polymer. Hence, this review comprehensively discussed several methods of inclusion of zwitterionic moieties in FO membrane. These methods include atom transfer radical polymerization (ATRP); second interfacial polymerization (SIP); coating and in situ formation. Furthermore, an attempt was made to understand the mechanism of improvement in FO performance by zwitterionic moieties. Finally, the future prospective of the application of zwitterions in FO has been discussed.
Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy-environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery-circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.
Globally, the contamination of water with arsenic is a serious health issue. Recently, several researches have endorsed the efficiency of biomass to remove As (III) via adsorption process, which is distinguished by its low cost and easy technique in comparison with conventional solutions. In the present work, biomass was prepared from indigenous Bacillus thuringiensis strain WS3 and was evaluated to remove As (III) from aqueous solution under different contact time, temperature, pH, As (III) concentrations and adsorbent dosages, both experimentally and theoretically. Subsequently, optimal conditions for As (III) removal were found; 6 (ppm) As (III) concentration at 37 °C, pH 7, six hours of contact time and 0.50 mg/ml of biomass dosage. The maximal As (III) loading capacity was determined as 10.94 mg/g. The equilibrium adsorption was simulated via the Langmuir isotherm model, which provided a better fitting than the Freundlich model. In addition, FESEM-EDX showed a significant change in the morphological characteristic of the biomass following As (III) adsorption. 128 batch experimental data were taken into account to create an artificial neural network (ANN) model that mimicked the human brain function. 5-7-1 neurons were in the input, hidden and output layers respectively. The batch data was reserved for training (75%), testing (10%) and validation process (15%). The relationship between the predicted output vector and experimental data offered a high degree of correlation (R2 = 0.9959) and mean squared error (MSE; 0.3462). The predicted output of the proposed model showed a good agreement with the batch work with reasonable accuracy.
Natural organic matters (NOMs) have been found to be the major foulant in the application of ultrafiltration (UF) for treating surface water. Against this background, although hydrophilicity has been demonstrated to aid fouling mitigation, other parameters such as membrane surface morphology may contribute equally to improved fouling resistance. In this work, with humic acid solution as the model substance, the effects of titanium dioxides (TiO2) types (PC-20, P25, and X500) on membrane anti-fouling and defouling properties were comparatively analysed. The aims are (1) to determine the correlation between membrane surface morphology and membrane fouling and (2) to investigate the anti-fouling and UV-cleaning abilities of PVDF/TiO2 mixed-matrix membranes with different membrane topographies and surface energy conditions. The mixed-matrix membrane with P25 TiO2 exhibited the most significant UV-defouling ability, with a high irreversible flux recovery ratio (IFRR(UV)) of 16.56 after 6 h of UV irradiation, whereas that with X500 TiO2 exhibited both superior anti-fouling and defouling properties due to its smoother surface and its highly reactive surface layer.
Rapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems. This review bridges the knowledge gap by delineating the feasibility of current technologies in laundry wastewater treatment and the experiences of various countries in adopting different approaches. Besides, the feasible methods for collecting laundry wastewater are elaborated. The development of the treatment technologies is highlighted, in which the integrated-treatment processes (physicochemical, biological, and combination of both) are critically discussed based on their functions and methods. A judicious selection of the technologies not only improves the energy efficiency and quality of the treated wastewater, but also mitigates capitals and operational costs. This is projected to enhance public acceptance towards the reuse of laundry wastewater. Thus, the comprehensive assessment herein is envisioned to insightfully guide national policymakers in exploring the viability of the technologies and water-recycling projects. Future research should focus on the techno-economic aspects of the treatment processes, especially their industrial scale-up.
In this study, process optimization for the microalgae-based piggery wastewater treatment was carried out by growing Chlorella sorokiniana AK-1 on untreated piggery wastewater with efficient COD/BOD/TN/TP removal and high biomass/protein productivities. Integration of the immobilization carriers (sponge, activated carbon) and semi-batch cultivation resulted in the effective treatment of raw untreated piggery wastewater. With 100% wastewater, 0.2% sponge and 2% activated carbon, the semi-batch cultivation (90% media replacement every 6 days) exhibited a COD, BOD, TN and TP removal efficiency of 95.7%, 99.0%, 94.1% and 96.9%, respectively. The maximal protein content, protein productivity, lutein content, and lutein productivity of the obtained microalgal biomass was 61.1%, 0.48 g/L/d, 4.56 mg/g, and 3.56 mg/L/d, respectively. The characteristics of the treated effluent satisfied Taiwan Piggery Wastewater Discharge Standards (COD
Landfill has become an underlying source of surface and groundwater pollution if not efficiently managed, due to the risk of leachate infiltration into to land and aquifers. The generated leachate is considered a serious environmental threat for the public health, because of the toxic and recalcitrant nature of its constituents. Thus, it must be collected and appropriately treated before being discharged into the environment. At present, there is no single unit process available for proper leachate treatment as conventional wastewater treatment processes cannot achieve a satisfactory level for degrading toxic substances present. Therefore, there is a growing interest in examination of different leachate treatment processes for maximum operational flexibility. Based on leachate characteristics, discharge requirements, technical possibilities, regulatory requirements and financial considerations, several techniques have been applied for its degradation, presenting varying degrees of efficiency. Therefore, this article presents a comprehensive review of existing research articles on the pros and cons of various leachate degradation methods. In line with environmental sustainability, the article stressed on the application and efficiency of sequencing batch reactor (SBR) system treating landfill leachate due to its operational flexibility, resistance to shock loads and high biomass retention. Contributions of integrated leachate treatment technologies with SBR were also discussed. The article further analyzed the effect of different adopted materials, processes, strategies and configurations on leachate treatment. Environmental and operational parameters that affect SBR system were critically discussed. It is believed that information contained in this review will increase readers fundamental knowledge, guide future researchers and be incorporated into future works on experimentally-based SBR studies for leachate treatment.
Lipases are enzyme with versatile industrial applications can be produced by the solid-state fermentation (SSF) method and is an economical alternative for enzyme production assisted by fungus. In Malaysia, 5 million of copra waste were generated annually. Large amount of copra waste produced will cause an increasing amount of the waste dumped to the landfill. Copra waste is one of the potential substrates to produce lipase enzyme through SSF. Thus, the aim of this study is to optimize the lipase production by SSF associated by Aspergillus niger using the 23 full factorial design approach. In this study the factors affecting parameters that involved in the production of lipase enzyme such as temperature (25˚ and 35˚), substrates concentration (40% and 60%) and inoculum size of Aspergillus niger (1 and 9 petri dish) were determined. The maximum production of lipase was obtained after 120-hour incubation in SSF. The optimum condition for inoculum size of Aspergillus niger was 9 plates, 30°C of incubation temperature and 60 % moisture contents. The range of the concentration of lipase enzyme produced varied from 105 U/ml to 170 U/ml. When applied to the wastewater treatment, the reducing percentage of fat, oil and grease (FOG) in food processing wastewater is reduced from 219.4925mg/l to 169.467mg/l accounted to the amount of 34 % FOG removal. Lipase produced using copra waste as a substrate using SSF has the potential value to be developed in the future for various industry including wastewater treatment industry.
Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.
The contamination of water bodies from heavy metals, either from natural sources or
anthropogenic sources, has become a major concern to the public. Industrial activities with improper
water treatment, and then leach into the water body, have become contaminated and harmful to
consume. Passive remediation is one of the treatments introduced to counter this problem as it is a low
cost but effective technique. After being widely acknowledged and through research conducted, the
most suitable remediation technique found is the permeable reactive barriers (PRBs). PRB is defined
as an in situ permeable treatment zone filled with reactive materials, designed to intercept and
remediate a contaminant plume under natural hydraulic gradients. There have been many findings
made from PRB which can be used to remove contaminants such as heavy metal, chlorinated solvents,
carbonates and aromatic hydrocarbons. The most crucial criteria in making a successful PRB is the
reactive media used to remove contaminants. The current paper presents an overview of the PRB
selective medias that have been used and also the unresolved issue on the long term performance of
PRB. The overall methodology for the application of PRB at a given site is also discussed in this
paper. This inexpensive but effective technique is crucial as a sustainable technology in order to treat
the drainage before it enters water tables to prevent water pollution and can be used as an alternative
raw water source.
Branching channel flow refers to any side water withdrawals from rivers or main channels.
Branching channels have wide application in many practical projects, such as irrigation and drainage
network systems, water and waste water treatment plants, and many water resources projects. In the
last decades, extensive theoretical and experimental investigations of the branching open channels
have been carried out to understand the characteristics of this branching flow, varying from case
studies to theoretical and experimental investigations. The objectives of this paper are to review and
summarise the relevant literatures regarding branching channel flow. These literatures were reviewed
based on flow characteristics, physical characteristics, and modeling of the branching flow.
Investigations of the flow into branching channel show that the branching discharge depends on many
interlinked parameters. It increases with the decreasing of the main channel flow velocity and Froude
number at the upstream of the branch channel junction. Also it increases with the increasing of the
branch channel bed slope. In subcritical flow, water depth in the branch channel is always lower than
the main channel water depth. The flow diversion to the branch channel leads to an increase of water
depth at the downstream of the main channel. From the review, it is important to highlight that most
of the study concentrated on flow characteristics in a right angle branch channel with a rigid boundary.
Investigations on different branching angles with movable bed have still to be explored.
The study examined modified Fenton (FeGAC/H2O2) pretreatment of the antibiotics amoxicillin and cloxacillin in aqueous solution for biological treatment. The treatment was optimized by the response surface methodology (RSM). The optimum operating conditions at pH3 were H2O2/COD molar ratio 2.0, FeGAC dose 3.5 g/L and reaction time 90 min for 87.53% removal of COD, 78.01% removal of TOC, and 98.24% removal of NH3-N. Biodegradability (BOD5/COD ratio) improved from zero to 0.36, indicating the effluent was amenable to biological treatment. Meanwhile, FTIR spectra indicated degradation of the antibiotics. Compared with Fenton or photo-Fenton, modified Fenton (FeGAC/H2O2) was more effective in the pre-treatment of the antibiotics amoxicillin and cloxacillin in aqueous solution for biological treatment.
Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m2.h and reverse salt transport of 1.6 ± 0.2 g/m2.h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.
Without nanosafety guidelines, the long-term sustainability of carbon nanotubes (CNTs) for water purifications is questionable. Current risk measurements of CNTs are overshadowed by uncertainties. New risks associated with CNTs are evolving through different waste water purification routes, and there are knowledge gaps in the risk assessment of CNTs based on their physical properties. Although scientific efforts to design risk estimates are evolving, there remains a paucity of knowledge on the unknown health risks of CNTs. The absence of universal CNT safety guidelines is a specific hindrance. In this paper, we close these gaps and suggested several new risk analysis roots and framework extrapolations from CNT-based water purification technologies. We propose a CNT safety clock that will help assess risk appraisal and management. We suggest that this could form the basis of an acceptable CNT safety guideline. We pay particular emphasis on measuring risks based on CNT physico-chemical properties such as diameter, length, aspect ratio, type, charge, hydrophobicity, functionalities and so on which determine CNT behaviour in waste water treatment plants and subsequent release into the environment.
Acrylamide is a synthetic monomer that has been classified as toxic and carcinogenic apart
from its diverse application in the industry. Its application is in the formation of
polyacrylamide. Polyacrylamide usage is diverse and is found as herbicide formulation, as soil
treatment agent and in water treatment plants. Deaths and sickness due to the accidental
exposure to acrylamide have been reported while chronic toxicity is also a source of the
problem. This review highlighted the toxic effect of acrylamide to various organisms like
human, animal and plant. This review also discusses on the potential use of biological
technologies to remediate acrylamide pollution in the environment and the degradation
pathways these microorganisms utilize to assimilate acrylamide as a nitrogen, carbon or both as
carbon and nitrogen sources.
The determination of the high-risk area and clusters of typhoid cases is critical in typhoid control. The purpose of this study was to identify and describe the epidemiology and spatial distribution of typhoid in four selected districts in Kelantan using GIS (geographical information system). A total of 1215 (99%) of the cases were coordinated with GPS (global positioning system) and mapping was done using ArcGIS 9.2. Spatial analysis was performed to determine the cluster and high-risk area of typhoid. Results showed that typhoid incidence was not associated with race and sex. Most affected were from the age group of 5-14 followed by 15-24 year olds. Nine sub-districts were categorized as highly endemic. In addition typhoid has shown a significant tendency to cluster and a total of 22 hotspots were found in Kota Bharu, Bachok and Tumpat with a few sub districts identified as high risk for typhoid. No significant relationships between the treated water ratio and flood risk area were found with the cluster of cases. The cluster of typhoid cases in the endemic area did not appear to be related to environmental risk factors. Understanding the characteristics of these clusters would enable the prevention of typhoid disease in the future.
Electrospun nanofiber membrane (NFM) has a high potential to be applied as a filter for produced water treatment due to its highly porous structure and great permeability. However, it faces fouling issues and has low mechanical properties, which reduces the performance and lifespan of the membrane. NFM has a low integrity and the fine mat easily detaches from the sheet. In this study, nylon 6,6 was selected as the polymer since it offers great hydrophilicity. In order to increase mechanical strength and separation performance of NFM, solvent vapor treatment was implemented where the vapor induces the fusion of fibers. The fabricated nylon 6,6 NFMs were treated with different exposure times of formic acid vapor. Results show that solvent vapor treatment helps to induce the fusion of overlapping fibers. The optimum exposure time for solvent vapor is 5 h to offer full retention of dispersed oil (100% of oil rejection), has 62% higher in tensile strength (1950 MPa) compared to untreated nylon 6,6 NFM (738 MPa), and has the final permeability closest to the untreated nylon 6,6 NFM (733 L/m2.h.bar). It also took more time to get fouled (220 min) compared to untreated NFM (160 min).