Displaying publications 2241 - 2260 of 9219 in total

Abstract:
Sort:
  1. Sieo CC, Abdullah N, Tan WS, Ho YW
    Br Poult Sci, 2005 Jun;46(3):333-9.
    PMID: 16050187
    The effects of beta-glucanase expressed by transformed Lactobacillus strains on growth performance, apparent digestibilities of dry matter and crude protein, and apparent metabolisable energy were studied. Two hundred and forty 1-d-old chicks (Avian-43) were randomly divided into three dietary treatment groups and fed with the following diets: (i) basal diet (control) (BD); (ii) basal diet with parental Lactobacillus strains (BDP) and (iii) basal diet with transformed Lactobacillus strains (BDT). At 21 d of age, the body weight, body weight gain and feed conversion ratio of the BDT-fed chickens were significantly improved. At 14 and 21 d of age, the proportions of dry matter in the duodenum, jejunum, ileum, caeca and excreta of chickens given the BDT diet were significantly higher than those of chickens given the BD and BDP diets. Apparent metabolisable energy, digestibilities of crude protein and dry matter were also significantly improved (by 3.5, 5.6 and 3.5%, respectively) by the BDT diet. These results showed that the transformed Lactobacillus strains improved digestibility as well as enhanced the growth performance of chickens.
    Matched MeSH terms: Dietary Proteins/metabolism; Energy Metabolism; Glycoside Hydrolases/metabolism*
  2. Chan SK, Lim TS
    Appl Microbiol Biotechnol, 2019 Apr;103(7):2973-2984.
    PMID: 30805670 DOI: 10.1007/s00253-019-09669-3
    Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
    Matched MeSH terms: Collagen/metabolism; Gelatin/metabolism; Chitosan/metabolism
  3. Akbar N, Siddiqui R, Sagathevan KA, Khan NA
    Appl Microbiol Biotechnol, 2019 May;103(10):3955-3964.
    PMID: 30941460 DOI: 10.1007/s00253-019-09783-2
    The morbidity and mortality associated with bacterial infections have remained significant despite chemotherapeutic advances. With the emergence of drug-resistant bacterial strains, the situation has become a serious threat to the public health. Thus, there is an urgent need to identify novel antibacterials. The majority of antibiotics available in the market are produced by bacteria isolated from soil. However, the low-hanging fruit has been picked; hence, there is a need to mine bacteria from unusual sources. With this in mind, it is important to note that animals and pests such as cockroaches, snake, crocodiles, and water monitor lizard come across pathogenic bacteria regularly, yet flourish in contaminated environments. These species must have developed methods to defend themselves to counter pathogens. Although the immune system is known to possess antiinfective properties, gut bacteria of animals/pests may also offer a potential source of novel antibacterial agents, and it is the subject of this study. This paper discusses our current knowledge of bacteria isolated from land and marine animals with antibacterial properties and to propose untapped sources for the isolation of bacteria to mine potentially novel antibiotic molecules.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*; Bacteria/metabolism*; Biological Products/metabolism*
  4. Azlan A, Obeidat SM, Yunus MA, Azzam G
    Sci Rep, 2019 08 21;9(1):12147.
    PMID: 31434910 DOI: 10.1038/s41598-019-47506-9
    Long noncoding RNAs (lncRNAs) play diverse roles in biological processes. Aedes aegypti (Ae. aegypti), a blood-sucking mosquito, is the principal vector responsible for replication and transmission of arboviruses including dengue, Zika, and Chikungunya virus. Systematic identification and developmental characterisation of Ae. aegypti lncRNAs are still limited. We performed genome-wide identification of lncRNAs, followed by developmental profiling of lncRNA in Ae. aegypti. We identified a total of 4,689 novel lncRNA transcripts, of which 2,064, 2,076, and 549 were intergenic, intronic, and antisense respectively. Ae. aegypti lncRNAs share many characteristics with other species including low expression, low GC content, short in length, and low conservation. Besides, the expression of Ae. aegypti lncRNAs tend to be correlated with neighbouring and antisense protein-coding genes. A subset of lncRNAs shows evidence of maternal inheritance; hence, suggesting potential role of lncRNAs in early-stage embryos. Additionally, lncRNAs show higher tendency to be expressed in developmental and temporal specific manner. The results from this study provide foundation for future investigation on the function of Ae. aegypti lncRNAs.
    Matched MeSH terms: RNA, Messenger/metabolism; RNA, Antisense/metabolism; RNA, Long Noncoding/metabolism*
  5. Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM
    Antioxid Redox Signal, 2017 05 10;26(14):794-813.
    PMID: 27650096 DOI: 10.1089/ars.2016.6806
    SIGNIFICANCE: Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected.

    CRITICAL ISSUES: While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events.

    FUTURE DIRECTIONS: Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.

    Matched MeSH terms: Hemoglobin E/metabolism*; Hemoglobinopathies/metabolism; beta-Thalassemia/metabolism*
  6. Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, et al.
    BMC Complement Altern Med, 2019 Jun 03;19(1):114.
    PMID: 31159791 DOI: 10.1186/s12906-019-2528-2
    BACKGROUND: Lactobacillus plantarum, a major species of Lactic Acid Bacteria (LAB), are capable of producing postbiotic metabolites (PM) with prominent probiotic effects that have been documented extensively for rats, poultry and pigs. Despite the emerging evidence of anticancer properties of LAB, very limited information is available on cytotoxic and antiproliferative activity of PM produced by L. plantarum. Therefore, the cytotoxicity of PM produced by six strains of L. plantarum on various cancer and normal cells are yet to be evaluated.

    METHODS: Postbiotic metabolites (PM) produced by six strains of L. plantarum were determined for their antiproliferative and cytotoxic effects on normal human primary cells, breast, colorectal, cervical, liver and leukemia cancer cell lines via MTT assay, trypan blue exclusion method and BrdU assay. The toxicity of PM was determined for human and various animal red blood cells via haemolytic assay. The cytotoxicity mode was subsequently determined for selected UL4 PM on MCF-7 cells due to its pronounced cytotoxic effect by fluorescent microscopic observation using AO/PI dye reagents and flow cytometric analyses.

    RESULTS: UL4 PM exhibited the lowest IC50 value on MCF-7, RG14 PM on HT29 and RG11 and RI11 PM on HL60 cell lines, respectively from MTT assay. Moreover, all tested PM did not cause haemolysis of human, dog, rabbit and chicken red blood cells and demonstrated no cytotoxicity on normal breast MCF-10A cells and primary cultured cells including human peripheral blood mononuclear cells, mice splenocytes and thymocytes. Antiproliferation of MCF-7 and HT-29 cells was potently induced by UL4 and RG 14 PM respectively after 72 h of incubation at the concentration of 30% (v/v). Fluorescent microscopic observation and flow cytometric analyses showed that the pronounced cytotoxic effect of UL4 PM on MCF-7 cells was mediated through apoptosis.

    CONCLUSION: In conclusion, PM produced by the six strains of L. plantarum exhibited selective cytotoxic via antiproliferative effect and induction of apoptosis against malignant cancer cells in a strain-specific and cancer cell type-specific manner whilst sparing the normal cells. This reveals the vast potentials of PM from L. plantarum as functional supplement and as an adjunctive treatment for cancer.

    Matched MeSH terms: Antineoplastic Agents/metabolism*; Cytotoxins/metabolism*; Lactobacillus plantarum/metabolism*
  7. Hazwani A, Sha'Ban M, Azhim A
    Organogenesis, 2019;15(4):120-136.
    PMID: 31495272 DOI: 10.1080/15476278.2019.1656997
    Extracellular matrix (ECM) based bioscaffolds prepared by decellularization has increasingly emerged in tissue engineering application because it has structural, biochemical, and biomechanical cues that have dramatic effects upon cell behaviors. Therefore, we developed a closed sonication decellularization system to prepare ideal bioscaffolds with minimal adverse effects on the ECM. The decellularization was achieved at 170 kHz of ultrasound frequency in 0.1% and 2% Sodium Dodecyl Sulphate (SDS) solution for 10 hours. The immersion treatment as control was performed to compare the decellularization efficiency with our system. Cell removal and ECM structure were determined by histological staining and biochemical assay. Biomechanical properties were investigated by the indentation testing to test the stiffness, a residual force and compression of bioscaffolds. Additionally, in vivo implantation was performed in rat to investigate host tissue response. Compared to native tissues, histological staining and biochemical assay confirm the absence of cellularity with preservation of ECM structure. Moreover, sonication treatment has not affected the stiffness [N/mm] and a residual force [N] of the aortic scaffolds except for compression [%] which 2% SDS significantly decreased compared to native tissues showing higher SDS has a detrimental effect on ECM structure. Finally, minimal inflammatory response was observed after 1 and 5 weeks of implantation. This study reported that the novelty of our developed closed sonication system to prepare ideal bioscaffolds for tissue engineering applications.
    Matched MeSH terms: Collagen/metabolism; Elastin/metabolism; Extracellular Matrix/metabolism
  8. Li H, Liu L, Dang M, Zhang W, Liu J
    Int J Neurosci, 2020 Jun;130(6):533-540.
    PMID: 31516045 DOI: 10.1080/00207454.2019.1667797
    Aim of the Study: This study was designed to explore the relative susceptibility of in vitro fertilization (IVF)-conceived mice to global cerebral ischemic injury with the possible role of hydrogen sulphide and enzymes responsible for its production.Materials and Methods: IVF was carried to obtain pups, which were allowed to grow to the age of eight weeks. Thereafter, male mice were subjected to 20 min of global ischemia and 24 h of reperfusion. The mice obtained from other groups including normal mating, superovulation but normal mating and normal mating but embryo implantation were also subjected to global ischemia-reperfusion (I/R) injury.Results: IVF-derived mice exhibited significant more injury in response to I/R injury in comparison to other groups assessed in terms of impairment in locomotor activity, development of motor in coordination, neurological severity score, cerebral infarction and apoptosis markers (caspase-3 activity and Bcl-2 expression). Moreover, there was a relative decrease in the brain levels of hydrogen sulphide (H2S) and its biosynthetic enzymes viz. cystathionine-β-synthase and cystathionine-γ-lyase. Interestingly, the levels of H2S and cystathionine-γ-lyase were significantly low in IVF-derived mice in basal conditions also, i.e. before subjecting to I/R injury and these biochemical alterations were associated with the behavioural deficits in mice, even before subjecting to I/R injury.Conclusion: It is concluded that in vitro fertilization-derived mice are more susceptible to global cerebral I/R injury, which may be possibly due to decreased levels of hydrogen sulphide and its biosynthetic enzymes viz., cystathionine-β-synthase and cystathionine-γ-lyase.
    Matched MeSH terms: Brain Ischemia/metabolism*; Hydrogen Sulfide/metabolism; Reperfusion Injury/metabolism*
  9. Adeeb N, Ton SH, Muslim N
    Clin Exp Hypertens A, 1990;12(6):1115-34.
    PMID: 2173984
    In order to examine whether erythrocyte membrane handling of sodium is influenced by factors other than hypertension, measurements of red cell sodium transport were studied in one hundred normotensive volunteers. Erythrocyte sodium content was found to increase with increasing age, body weight and mean arterial pressure (MAP). It is also significantly correlated with age, body weight and MAP. Total sodium efflux was found to be reduced and negatively correlated with age and body weight. A reduction in ouabain-sensitive sodium efflux was also observed with increasing age and body weight. In males, the rate of ouabain-sensitive sodium efflux is higher than in females. Race was found to have no effect on erythrocyte electrolyte content and cationic flux rates of subjects. These data suggest that when studies in hypertension are going to be carried out, control subjects carefully matched for age, body weight and sex should be used if confounding results are not to be obtained.
    Matched MeSH terms: Erythrocytes/metabolism; Potassium/metabolism; Sodium Channels/metabolism*
  10. Liew KF, Hanapi NA, Chan KL, Yusof SR, Lee CY
    J Pharm Sci, 2017 02;106(2):502-510.
    PMID: 27855959 DOI: 10.1016/j.xphs.2016.10.006
    Previously, several aurone derivatives were identified with promising neuroprotective activities. In developing these compounds to target the central nervous system (CNS), an assessment of their blood-brain barrier (BBB) permeability was performed using in vitro BBB models: parallel artificial membrane permeability assay-BBB which measures passive permeability and primary porcine brain endothelial cell model which enables determination of the involvement of active transport mechanism. Parallel artificial membrane permeability assay-BBB identified most compounds with high passive permeability, with 3 aurones having exceptional Pevalues highlighting the importance of basic amine moieties and optimal lipophilicity for good passive permeability. Bidirectional permeability assays with porcine brain endothelial cell showed a significant net influx permeation of the aurones indicating a facilitated uptake mechanism in contrast to donepezil, a CNS drug included in the evaluation which only displayed passive permeation. From pH-dependent permeability assay coupled with data analysis using pCEL-X software, intrinsic transcellular permeability (Po) of a representative aurone 4-3 was determined, considering factors such as the aqueous boundary layer that may hinder accurate in vitro to in vivo correlation. The Po value determined supported the in vivo feasibility of the aurone as a CNS-active compound.
    Matched MeSH terms: Blood-Brain Barrier/metabolism*; Brain/metabolism; Endothelial Cells/metabolism
  11. Rusli N, Amanah A, Kaur G, Adenan MI, Sulaiman SF, Wahab HA, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2019 04;392(4):481-496.
    PMID: 30604191 DOI: 10.1007/s00210-018-01605-y
    Mitragynine is a major component isolated from Mitragyna speciosa Korth or kratom, a medicinal plant known for its opiate-like and euphoric properties. Multiple toxicity and fatal cases involving mitragynine or kratom have been reported but the underlying causes remain unclear. P-glycoprotein (P-gp) is a multidrug transporter which modulates the pharmacokinetics of xenobiotics and plays a key role in mediating drug-drug interactions. This study investigated the effects of mitragynine on P-gp transport activity, mRNA, and protein expression in Caco-2 cells using molecular docking, bidirectional assay, RT-qPCR, Western blot analysis, and immunocytochemistry techniques, respectively. Molecular docking simulation revealed that mitragynine interacts with important residues at the nucleotide binding domain (NBD) site of the P-gp structure but not with the residues from the substrate binding site. This was consistent with subsequent experimental work as mitragynine exhibited low permeability across the cell monolayer but inhibited digoxin transport at 10 μM, similar to quinidine. The reduction of P-gp activity in vitro was further contributed by the downregulation of mRNA and protein expression of P-gp. In summary, mitragynine is likely a P-gp inhibitor in vitro but not a substrate. Hence, concurrent administration of mitragynine-containing kratom products with psychoactive drugs which are P-gp substrates may lead to clinically significant toxicity. Further clinical study to prove this point is needed.
    Matched MeSH terms: Cell Membrane/metabolism; RNA, Messenger/metabolism; P-Glycoprotein/metabolism
  12. Vairappan CS, Daitoh M, Suzuki M, Abe T, Masuda M
    Phytochemistry, 2001 Sep;58(2):291-7.
    PMID: 11551553
    Two halogenated C15 acetogenins, named lembyne-A and lembyne-B, have been isolated from an unrecorded Laurencia species collected off the Malaysian waters. Their structures were deduced on the basis of spectroscopic evidence. Previously known elatol and iso-obtusol showed potent antibacterial activity against some marine bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism; Bridged Compounds/metabolism; Hydrocarbons, Halogenated/metabolism
  13. Al-Khdhairawi AAQ, Cordell GA, Thomas NF, Shivanagere Nagojappa NB, Weber JF
    Org Biomol Chem, 2019 10 28;17(40):8943-8957.
    PMID: 31482157 DOI: 10.1039/c9ob01501a
    Diterpene pyrones (DTPs) are a group of well-known, mainly fungal, natural products, first isolated in 1966. As the name indicates, they are composed of two main structural features: a diterpenyl moiety and a pyrone ring. Various names have been given to this class of metabolites; however, biogenetic evidence indicates that they originate through the same metabolic pathway. Based on their biosynthesis, which leads to differences in their structural architecture, the DTPs can be classified into three main types. In addition to their intriguing chemistry, these compounds demonstrate a wide range of biological activities rendering them a desirable target for total synthesis. To date, sixty-seven DTPs have been isolated from various fungal species, with one example originating from the plant kingdom. This review aims at unifying the classification of these compounds, in addition to presenting a detailed description of their isolation, bioactivities, biosynthesis, and total synthesis.
    Matched MeSH terms: Biological Products/metabolism*; Diterpenes/metabolism*; Pyrones/metabolism*
  14. Abdelzaher E, Elwany A, Amr SA
    Malays J Pathol, 2018 Dec;40(3):355-358.
    PMID: 30580369
    Malignant peripheral nerve sheath tumour (MPNST) with perineurial differentiation is a rare variant of MPNST. The pathological features and clinical significance of this variant remain to be characterised. We reported the clinicoradiological and pathological features of a case of recurrent right arm mass related to the ulnar nerve in a 42-year-old female patient. On pathological examination, the tumour showed dual features of conventional and perineurial MPNST which was proven by positive immunostaining for S-100 and EMA. The pathological diagnosis was MPNST with perineurial differentiation. In addition, a peculiar and rare finding of intracytoplasmic eosinophilic hyaline globules (thanatosomes) within tumour cells is reported. We document a rare tumour with hybrid features between conventional and perineurial MPNSTs. Further studies are needed to establish its biological behaviour.
    Matched MeSH terms: Hyalin/metabolism; Soft Tissue Neoplasms/metabolism; Neurofibrosarcoma/metabolism
  15. Arfan M, Siddiqui SZ, Abbasi MA, Rehman A, Shah SAA, Ashraf M, et al.
    Pak J Pharm Sci, 2018 Nov;31(6 (Supplementary):2697-2708.
    PMID: 30587482
    The research was aimed to unravel the enzymatic potential of sequentially transformed new triazoles by chemically converting 4-methoxybenzoic acid via Fischer's esterification to 4-methoxybenzoate which underwent hydrazinolysis and the corresponding hydrazide (1) was cyclized with phenyl isothiocyanate (2) via 2-(4-methoxybenzoyl)-N-phenylhydrazinecarbothioamide (3); an intermediate to 5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazol-3-thiol (4). The electrophiles; alkyl halides 5(a-g) were further reacted with nucleophilic S-atom to attain a series of S-alkylated 5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols 6(a-g). Characterization of synthesized compounds was accomplished by contemporary spectral techniques such as FT-IR, 1H-NMR, 13C-NMR and EI-MS. Excellent cholinesterase inhibitory potential was portrayed by 3-(n-heptylthio)-5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole; 6g against AChE (IC50; 38.35±0.62μM) and BChE (IC50; 147.75±0.67μM) enzymes. Eserine (IC50; 0.04±0.01μM) was used as reference standard. Anti-proliferative activity results ascertained that derivative encompassing long straight chain substituted at S-atom of the moiety was the most potent with 4.96 % cell viability (6g) at 25μM and with 2.41% cell viability at 50μMamong library of synthesized derivatives. In silico analysis also substantiated the bioactivity statistics.
    Matched MeSH terms: Cholinesterase Inhibitors/metabolism; Sulfhydryl Compounds/metabolism; Triazoles/metabolism
  16. Sim EU, Talwar SP
    BMC Mol Cell Biol, 2019 08 15;20(1):34.
    PMID: 31416416 DOI: 10.1186/s12860-019-0219-y
    BACKGROUND: Association of Epstein-Barr virus (EBV) encoded latent gene products with host ribosomal proteins (RPs) has not been fully explored, despite their involvement in the aetiology of several human cancers. To gain an insight into their plausible interactions, we employed a computational approach that encompasses structural alignment, gene ontology analysis, pathway analysis, and molecular docking.

    RESULTS: In this study, the alignment analysis based on structural similarity allows the prediction of 48 potential interactions between 27 human RPs and the EBV proteins EBNA1, LMP1, LMP2A, and LMP2B. Gene ontology analysis of the putative protein-protein interactions (PPIs) reveals their probable involvement in RNA binding, ribosome biogenesis, metabolic and biosynthetic processes, and gene regulation. Pathway analysis shows their possible participation in viral infection strategies (viral translation), as well as oncogenesis (Wnt and EGFR signalling pathways). Finally, our molecular docking assay predicts the functional interactions of EBNA1 with four RPs individually: EBNA1-eS10, EBNA1-eS25, EBNA1-uL10 and EBNA1-uL11.

    CONCLUSION: These interactions have never been revealed previously via either experimental or in silico approach. We envisage that the calculated interactions between the ribosomal and EBV proteins herein would provide a hypothetical model for future experimental studies on the functional relationship between ribosomal proteins and EBV infection.

    Matched MeSH terms: Herpesvirus 4, Human/metabolism*; Ribosomal Proteins/metabolism*; Viral Proteins/metabolism*
  17. Nurfarahin AH, Mohamed MS, Phang LY
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323769 DOI: 10.3390/molecules24142613
    High production costs of biosurfactants are mainly caused by the usage of the expensive substrate and long fermentation period which undermines their potential in bioremediation processes, food, and cosmetic industries even though they, owing to the biodegradability, lower toxicity, and raise specificity traits. One way to circumvent this is to improvise the formulation of biosurfactant-production medium by using cheaper substrate. A culture medium utilizing palm fatty acid distillate (PFAD), a palm oil refinery by-product, was first developed through one-factor-at-a-time (OFAT) technique and further refined by means of the statistical design method of factorial and response surface modeling to enhance the biosurfactant production from Pseudomonas sp. LM19. The results shows that, the optimized culture medium containing: 1.148% (v/v) PFAD; 4.054 g/L KH2PO4; 1.30 g/L yeast extract; 0.023 g/L sodium-EDTA; 1.057 g/L MgSO4·7H2O; 0.75 g/L K2HPO4; 0.20 g/L CaCl2·2H2O; 0.080 g/L FeCl3·6H2O gave the maximum biosurfactant productivity. This study demonstrated that the cell concentration and biosurfactant productivity could reach up to 8.5 × 109 CFU/mL and 0.346 g/L/day, respectively after seven days of growth, which were comparable to the values predicted by an RSM regression model, i.e., 8.4 × 109 CFU/mL and 0.347 g/L/day, respectively. Eleven rhamnolipid congeners were detected, in which dirhamnolipid accounted for 58% and monorhamnolipid was 42%. All in all, manipulation of palm oil by-products proved to be a feasible substrate for increasing the biosurfactant production about 3.55-fold as shown in this study.
    Matched MeSH terms: Nitrogen/metabolism; Pseudomonas/metabolism*; Surface-Active Agents/metabolism*
  18. Tai ELM, Loong LJ, Madhusudhan P, Ramli RR, Che Maraina CH, Hussein A
    Can J Ophthalmol, 2019 10;54(5):635-639.
    PMID: 31564357 DOI: 10.1016/j.jcjo.2018.12.003
    OBJECTIVE: To compare cytokine levels in the pre-corneal tear film between patients with allergic rhinitis, allergic rhinoconjunctivitis and the normal population.

    DESIGN: A comparative cross sectional study.

    PARTICIPANTS: Patients were divided into Group 1 (allergic rhinitis without conjunctivitis), Group 2 (allergic rhinoconjunctivitis), and Group 3 (normal population).

    METHODS: A comparative cross-sectional study was conducted. Patients were divided into; Group 1 (allergic rhinitis without conjunctivitis), Group 2 (allergic rhinoconjunctivitis), and Group 3 (normal controls). Tears were collected using Schirmer strips and cytokine analysis performed using enzyme linked immunosorbent assay.

    RESULTS: There were a total of 68 subjects. Median values of cytokines in the allergic rhinitis group were as follows; TNFa (45.34 pg/ml), IL-4 (61.91 pg/ml), IL-5 (8.92 pg/ml), IL-6 (538.37 pg/ml) and IL-8 (1438.72 pg/ml). Cytokine levels in the group with allergic rhinoconjunctivitis were approximately two-fold higher than in the group with allergic rhinitis only. The median cytokine level in the control group was lowest. A significant inter-group difference was observed for TNF-alpha, IL-4, IL-6 and IL-8 levels, with allergic rhinoconjunctivitis patients demonstrating significantly elevated cytokines compared to those with allergic rhinitis only (p<0.001). These four cytokines were also significantly higher in those with allergic rhinitis than in controls (p<0.005). Although the group with allergic rhinoconjunctivitis had the highest levels of IL-5, no statistically significant inter-group difference was noted (p=0.479).

    CONCLUSION: This study demonstrated the presence of raised tear film inflammatory cytokines even in allergic rhinitis patients without ocular symptoms. These patients may be at increased risk of developing allergic conjunctivitis. These findings not only substantiate the immunological theory of the naso-ocular reflex, but have clinical and therapeutic implications for the holistic management of allergic rhinitis and conjunctivitis.

    Matched MeSH terms: Biomarkers/metabolism; Cytokines/metabolism*; Rhinitis, Allergic/metabolism*
  19. Lu J, Zhang C, Leong HY, Show PL, Lu F, Lu Z
    J Biosci Bioeng, 2020 Mar;129(3):327-332.
    PMID: 31585857 DOI: 10.1016/j.jbiosc.2019.09.006
    In this study, the bacterial lipoxygenase (LOX) gene from Pseudomonas aeruginosa ATCC27853 (pse-LOX) was cloned, sequenced and heterologous expressed in Escherichia coli by auto-induction expression strategy. Production of the recombinant pse-LOX (pse-rLOX) gene up to 23,850 U/mL (264 mg pure protein/L bacterial culture fluid) was observed in the end of this process. To the best of our knowledge, this is the first attempt to manipulate LOX heterologous expression process using auto-induction expression approach, and it is the highest production of recombinant LOX compared with other reports. Subsequently, the resulted pse-rLOX was proved to efficiently degrade triphenylmethane dyes such as malachite green, brilliant green and aniline blue. Generally, an overproduction of the LOX from P. aeruginosa was observed in E. coli, and this recombinant gene is a potential candidate as biocatalyst for triphenylmethane dyes decolorization.
    Matched MeSH terms: Coloring Agents/metabolism*; Escherichia coli/metabolism*; Lipoxygenase/metabolism*
  20. Soliman AM, Lin TS, Mahakkanukrauh P, Das S
    Int J Mol Sci, 2020 Oct 13;21(20).
    PMID: 33066062 DOI: 10.3390/ijms21207539
    Multiple myeloma (MM) is a cancerous bone disease characterized by malignant transformation of plasma cells in the bone marrow. MM is considered to be the second most common blood malignancy, with 20,000 new cases reported every year in the USA. Extensive research is currently enduring to validate diagnostic and therapeutic means to manage MM. microRNAs (miRNAs) were shown to be dysregulated in MM cases and to have a potential role in either progression or suppression of MM. Therefore, researchers investigated miRNAs levels in MM plasma cells and created tools to test their impact on tumor growth. In the present review, we discuss the most recently discovered miRNAs and their regulation in MM. Furthermore, we emphasized utilizing miRNAs as potential targets in the diagnosis, prognosis and treatment of MM, which can be useful for future clinical management.
    Matched MeSH terms: Multiple Myeloma/metabolism; Biomarkers, Tumor/metabolism; MicroRNAs/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links