METHODS: A systematic search was performed in PubMed, the Cochrane library, CINAHL, Web of Science, ScienceDirect and Scopus, where 20 studies were selected for analysis of scanning parameters and CM reduction methods.
RESULTS: The mean effective dose (HE) ranged from 0.31 to 2.75 mSv at 80 kVp, 0.69 to 6.29 mSv at 100 kVp and 1.53 to 10.7 mSv at 120 kVp. Radiation dose reductions of 38 to 83% at 80 kVp and 3 to 80% at 100 kVp could be achieved with preserved image quality. Similar vessel contrast enhancement to 120 kVp could be obtained by applying iodine delivery rate (IDR) of 1.35 to 1.45 g s-1 with total iodine dose (TID) of between 10.9 and 16.2 g at 80 kVp and IDR of 1.08 to 1.70 g s-1 with TID of between 18.9 and 20.9 g at 100 kVp.
CONCLUSION: This systematic review found that radiation doses could be reduced to a rate of 38 to 83% at 80 kVp, and 3 to 80% at 100 kVp without compromising the image quality. Advances in knowledge: The suggested appropriate scanning parameters and CM reduction methods can be used to help users in achieving diagnostic image quality with reduced radiation dose.
METHODS: We retrospectively analyzed one-year data from our stroke registry that began with the establishment of our hyperacute stroke service at Universiti Putra Malaysia Teaching Hospital from April 2020 until May 2021.
RESULTS: Setting up acute stroke services during the pandemic with constrained manpower and implementation of COVID-19 SOPs, was challenging. There was a significant dip of stroke admission from April to June 2020 due to the Movement Control Order (MCO) implemented by the government to curb the spread of COVID-19. However, the numbers of stroke admission steadily rose approaching 2021, after the implementation of recovery MCO. We managed to treat 75 patients with hyperacute stroke interventions i.e. intravenous thrombolysis (IVT), mechanical thrombectomy (MT) or both. Despite implementing COVID-19 SOPs and using magnetic resonance imaging (MRI) as our first line acute stroke imaging modality, clinical outcomes in our cohort were encouraging; almost 40% of patients who underwent hyperacute stroke treatment had early neurological recovery (ENR), and only 33% of patients had early neurological stability (ENS). In addition, we were able to maintain our door-to-imaging (DTI) and door-to-needle (DTN) time in line with international recommendations.
CONCLUSIONS: Our data reflects that COVID-19 SOPs did not deter successful delivery of hyperacute stroke services in our center. However, bigger and multi center studies are required to support our findings.
METHOD: Prevalence of the anterior ethmoid genu, its morphology and its relationship with the frontal sinus drainage pathway was assessed. Computed tomography scans with multiplanar reconstruction were used to study non-diseased sinonasal complexes.
RESULTS: The anterior ethmoidal genu was present in all 102 anatomical sides studied, independent of age, gender and race. Its position was within the frontal sinus drainage pathway, and the drainage pathway was medial to it in 98 of 102 cases. The anterior ethmoidal genu sometimes extended laterally and formed a recess bounded by the lamina papyracea laterally, by the uncinate process anteriorly and by the bulla ethmoidalis posteriorly. Distance of the anterior ethmoidal genu to frontal ostia can be determined by the height of the posterior wall of the agger nasi cell rather than its volume or other dimensions.
CONCLUSION: This study confirmed that the anterior ethmoidal genu is a constant anatomical structure positioned within frontal sinus drainage pathway. The description of anterior ethmoidal genu found in this study explained the anatomical connection between the agger nasi cell, uncinate process and bulla ethmoidalis and its structural organisation.
METHODS: One hundred and four adult patients were randomized to group POGO 100% or POGO <50% . Laryngoscopy was performed by advancing tip of the D blade at vallecula. POGO 100% was achieved by exerting upward force to displace epiglottis until glottic opening from the anterior commissure to inter arytenoid notch. POGO < 50% was acquired by withdrawing the D blade tip dorsally from vallecula. The primary outcome was time to intubation.
RESULTS: The median time (IQR) to successful intubation was 29 (25-35) seconds for group POGO < 50% and 34 (28-40) seconds for group with POGO 100% (difference in medians, 5 seconds; 95% confidence interval, 2 to 8, p = 0.003). Complications were minor.
CONCLUSION: Using the CMACTM D blade with a reduced POGO in patients with cervical spine immobilization resulted in faster tracheal intubation.
TRIAL REGISTRATION: The trial is registered at ClinicalTrial.gov (CT.gov identifier: NCT04833166).