Displaying publications 2761 - 2780 of 3987 in total

Abstract:
Sort:
  1. Daramola J, M Ekhwan T, Adepehin EJ, Mokhtar J, Lam KC, Er AC
    Heliyon, 2019 Jul;5(7):e02121.
    PMID: 31384682 DOI: 10.1016/j.heliyon.2019.e02121
    Water constitutes a major environmental and public health concerns worldwide. A large proportion of global water consumption is sourced from surface water. The dependency level on surface water is higher in developing countries, especially in rural-to-semi-urban areas, where subsurface water is not accessible. Presented in this paper is a spatiotemporal and hydrochemical quality assessment of the spring-originated Landzun Stream in Bida, Nigeria; which is usually consumed in its untreated state. Water samples were systematically collected in eighteen locations along the stream channel in both rainy and dry seasons at an equidistance interval of 500m. On-site and laboratory measurement of important physical and hydrochemical parameters were carried out using standard procedures. Water temperature in the rainy season (34-37 °C) slightly exceeds measured values in the dry season (29-33 °C). 72.22% (rainy) and 83.33% (dry) of collected samples did not meet the odourless requirement for drinking water. Similarly, estimated percentages of 66.67 and 94.44 of collected samples in rainy and dry seasons respectively have a taste. Contrary to data in the rainy season, 89%, 11%, 67% and 56% of the dry season's samples were enriched in magnesium (Mg), lead (Pb), potassium (K) and iron (Fe) respectively above the 2018 World Health Organisation guidelines for drinking water. This study further established that seasonal variation plays a major role in altering the aesthetic surface water quality. The intake of untreated surface water is a vehicle for potential water-borne diseases and allergies, hence alternative sources of drinking water for the populace dependent on the Landzun Stream is recommended to reduce risks and possible dangers of consuming the stream water.
    Matched MeSH terms: Water Quality; Drinking Water
  2. Anandkumar A, Nagarajan R, Prabakaran K, Bing CH, Rajaram R, Li J, et al.
    Mar Pollut Bull, 2019 Aug;145:56-66.
    PMID: 31590824 DOI: 10.1016/j.marpolbul.2019.05.002
    The concentration of nine trace elements were analyzed in the different tissue organs of commonly available crabs (Portunus sanguinolentus, Portunus pelagicus and Scylla serrate) and bivalve (Polymesoda erosa) species collected from the Miri coast, Borneo in order to evaluate the potential health risk by consumption of these aquatic organisms. Among the analyzed organs, metal accumulation was higher in the gill tissues. The essential (Cu and Zn) and non-essential (Pb and Cd) elements showed the highest (i.e. Zn) and lowest concentrations (i.e. Cd) in their tissue organs, respectively. The estimated daily intake and hazard indices of all metals in the muscle indicate that the measured values were below the provisional tolerable daily intake suggested by the joint FAO/WHO Expert Committee on Food Additives. Compared to Malaysian and international seafood guideline values the results obtained from the present study are lower than the permissible limits and safe for consumption.
    Matched MeSH terms: Water Pollutants, Chemical/metabolism
  3. Savadkoohi S, Hoogenkamp H, Shamsi K, Farahnaky A
    Meat Sci, 2014 Aug;97(4):410-8.
    PMID: 24769097 DOI: 10.1016/j.meatsci.2014.03.017
    The present investigation focuses on the textural properties, sensory attributes and color changes of beef frankfurter, beef ham and meat-free sausage produced by different levels of bleached tomato pomace. The texture and color profile were performed using an instrumental texture analyzer and colorimeter. The findings indicated that tomato pomace-added sausages had higher water holding capacity (WHC) compared to that of commercial samples. The frankfurters containing 5 and 7% (w/w) tomato pomace had the highest redness (a*), chroma (C*) and color differences (ΔE) values, while the meat-free sausages containing 7% (w/w) tomato pomace had significant (p<0.05) values for lightness (L*) and yellowness (b*). Furthermore, there were no significant (p>0.05) color differences between beef ham samples (with and without tomato pomace). A significant progression in the textural hardness and chewiness of systems containing tomato pomace was observed as well as higher sensory scores by panelists. According to sensorial evaluations, bleached tomato pomace improved the consumer acceptability and preference.
    Matched MeSH terms: Water*
  4. Ismail I, Hwang YH, Joo ST
    Meat Sci, 2019 Nov;157:107882.
    PMID: 31295690 DOI: 10.1016/j.meatsci.2019.107882
    This paper describes the influence of different factors on toughness of beef semitendinosus (ST) by means of low temperature-long time cooking with single-stage (60 °C, 65 °C, 70 °C, and 75 °C for 6 h and 12 h) and two-stage sous-vide procedure (45 + 60 °C, 45 + 65 °C, 45 + 70 °C, and 45 + 75 °C; 49 + 60 °C, 49 + 65 °C, 49 + 70 °C, and 49 + 75 °C for 3 h at the first temperature, and either 3 or 9 h at the second temperature). Reduced toughness of ST beef steak muscle could be attained in 6 h at 60 °C and 45 + 60 °C were due from the minimum shrinkage of sarcomere as well as lower perimysial thickness, cooking loss, and elastic modulus. Collagen solubility showed a positive correlation to the toughness values. The relationship between proteolytic activity and shear force can be seen after 12 h of cooking duration. For the other quality attributes, two stepped cooking temperature-time combination seems to be more effective in preserving the redness values and water content than a single-stage sous-vide method.
    Matched MeSH terms: Water/chemistry
  5. Foo LC, Zainab T, Goh SY, Letchuman GR, Nafikudin M, Doraisingam P, et al.
    Biomed Environ Sci, 1996 Sep;9(2-3):236-41.
    PMID: 8886337
    A simple water iodizing system, which incorporates the Venturi principle in combination with the controlled release mechanism of a silicone-sodium iodide elastomer, for the iodization of rural piped-water supply in the control of endemic iodine deficiency has been developed and its effectiveness evaluated in three Iban longhouse villages in the iodine-deficient district of Lubok Antu, Sarawak. Urines were collected for iodine assays from women aged 15-40 years before and at 6 and 12 months after the connection of the iodinating device; goiter assessment was performed on the women at the start and end of the 1-year study. Water samples were collected for iodine assays at 2-weekly intervals. In all three villages, significant and sustained increases in median urinary iodine excretions, reaching levels recommended for an iodine-sufficient population, were observed; goitre prevalences were reduced in all the villages (by 22.6% to 35.8%). The iodine levels in the water ranged from 34 micrograms/l to 212 micrograms/L. In the control village, median urinary iodine excretions remained essentially unchanged but a small increase in goiter prevalence was observed. The iodized water was well received by the villagers and no adverse effects of water iodization were observed. The system functioned unattended throughout the one year period. The cost of providing supplemental iodine via the iodizing device is approximately 60 cents (U.S.) per family per year which is affordable by either the Government or the villagers. It is concluded that the iodizing system offers a new cost-effective strategy for the control of endemic iodine deficiency in Sarawak and may have applications in other areas with similar water sources.
    Matched MeSH terms: Water Supply*
  6. Ismail NAH, Aris AZ, Wee SY, Nasir HM, Razak MR, Kamarulzaman NH, et al.
    Food Chem, 2021 May 30;345:128806.
    PMID: 33352402 DOI: 10.1016/j.foodchem.2020.128806
    The presence and distribution of endocrine-disrupting chemicals (EDCs) in the mariculture fish from Pulau Kukup, Johor of Malaysia have been studied along with the impact on human health. Six different species of mariculture fish were collected, due to their high consumption in the Asian region-especially Malaysia, to assess their levels of EDCs. The highest concentration of EDCs detected in the muscle was dexamethasone (2.37-15.84 ng/g) and (0.77-13.41 ng/g), in the liver was dexamethasone (<2.54-43.56 ng/g) and progesterone (2.23-9.78 ng/g), and in the reproductive organ are dexamethasone (<2.54-37.23 ng/g) and caffeine (0.21-18.92 ng/g). The human health risk assessment in the current study suggested that there is no potential risk to the consumer because the hazard index was below 1 (HI 
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  7. Tan X, Zhu S, Show PL, Qi H, Ho SH
    J Hazard Mater, 2020 07 05;393:122435.
    PMID: 32151933 DOI: 10.1016/j.jhazmat.2020.122435
    Biochar (BC) has attracted much attention owing to its superior sorption capacity towards ionized organic contaminants. However, the mechanism of ionized organics sorption occurring within BC containing large amounts of minerals is still controversial. In this study, we demonstrate the physicochemical structure of high-salinity microalgal residue derived biochar (HSBC) and elucidate the corresponding sorption mechanisms for four ionized dyes along with determining the crucial role of involved minerals. The results indicate that sodium and calcium minerals mainly exist within HSBCs, and the pyrolysis temperature can dramatically regulate the phases and interfacial property of both carbon matrix and minerals. As a result, the HSBC shows a higher sorption potential, benefiting from abundant functional groups and high content of inorganic minerals. Using theoretical calculations, the activities of electron donor-acceptor interaction between HSBCs and different dyes are clearly illustrated, thereby identifying the critical role of Ca2+ in enhancing the removal of ionized dyes in HSBCs. In addition, Ca-containing minerals facilitate the sorption of ionized dyes in HSBCs by forming ternary complexes through metal-bridging mechanism. These results of mineral-induced dye sorption mechanisms help to better understand the sorption of ionized organics in high-salt containing BC and provide a new disposal strategy for hazardous microalgal residue, as well as provide a breakthrough in making the remediation of ionized organic contaminated microalgal residue derived absorbent feasible.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  8. Khalil MI, Sulaiman SA, Gan SH
    Food Chem Toxicol, 2010 Aug-Sep;48(8-9):2388-92.
    PMID: 20595027 DOI: 10.1016/j.fct.2010.05.076
    5-Hydroxymethylfurfural (HMF) content is an indicator of the purity of honey. High concentrations of HMF in honey indicate overheating, poor storage conditions and old honey. This study investigated the HMF content of nine Malaysian honey samples, as well as the correlation of HMF formation with physicochemical properties of honey. Based on the recommendation by the International Honey Commission, three methods for the determination of HMF were used: (1) high performance liquid chromatography (HPLC), (2) White spectrophotometry and (3) Winkler spectrophotometry methods. HPLC and White spectrophotometric results yielded almost similar values, whereas the Winkler method showed higher readings. The physicochemical properties of honey (pH, free acids, lactones and total acids) showed significant correlation with HMF content and may provide parameters that could be used to make quick assessments of honey quality. The HMF content of fresh Malaysian honey samples stored for 3-6 months (at 2.80-24.87 mg/kg) was within the internationally recommended value (80 mg/kg for tropical honeys), while honey samples stored for longer periods (12-24 months) contained much higher HMF concentrations (128.19-1131.76 mg/kg). Therefore, it is recommended that honey should generally be consumed within one year, regardless of the type.
    Matched MeSH terms: Water/analysis
  9. Abdeshahian P, Samat N, Hamid AA, Yusoff WM
    J Ind Microbiol Biotechnol, 2010 Jan;37(1):103-9.
    PMID: 19937085 DOI: 10.1007/s10295-009-0658-0
    The production of beta-mannanase from palm kernel cake (PKC) as a substrate in solid substrate fermentation (SSF) was studied using a laboratory column bioreactor. The simultaneous effects of three independent variables, namely incubation temperature, initial moisture content of substrate and airflow rate, on beta-mannanase production were evaluated by response surface methodology (RSM) on the basis of a central composite face-centered (CCF) design. Eighteen trials were conducted in which Aspergillus niger FTCC 5003 was cultivated on PKC in an aerated column bioreactor for seven days under SSF process. The highest level of beta-mannanase (2117.89 U/g) was obtained when SSF process was performed at incubation temperature, initial moisture level and aeration rate of 32.5 degrees C, 60% and 0.5 l/min, respectively. Statistical analysis revealed that the quadratic terms of incubation temperature and initial moisture content had significant effects on the production of beta-mannanase (P < 0.01). A similar analysis also demonstrated that the linear effect of initial moisture level and an interaction effect between the initial moisture content and aeration rate significantly influenced the production of beta-mannanase (P < 0.01). The statistical model suggested that the optimal conditions for attaining the highest level of beta-mannanase were incubation temperature of 32 degrees C, initial moisture level of 59% and aeration rate of 0.5 l/min. A beta-mannanase yield of 2231.26 U/g was obtained when SSF process was carried out under the optimal conditions described above.
    Matched MeSH terms: Water/analysis
  10. Mohd Nor NA, Chadwick BL, Farnell DJ, Chestnutt IG
    Rev Environ Health, 2020 Nov 18;35(4):419-426.
    PMID: 32598322 DOI: 10.1515/reveh-2019-0059
    OBJECTIVE: The increased availability of fluoride and concern over the impact of fluorosis, have led to guidance suggesting a decrease or cease in the optimal concentration of fluoride in water fluoridation schemes. To date there have been no systematic reviews looking at both impact of fluoride reduction and total cessation. This review aimed to examine the impact of stopping or reducing the level of fluoride in public water supplies on dental fluorosis.

    CONTENT: Multiple databases were searched (MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials and the Web of Science). Two reviewers independently screened sources, extracted data and assessed study quality. Results were synthesised qualitatively and quantitatively. The main outcome measure was the prevalence of dental fluorosis.

    SUMMARY: Six studies of cross-sectional design were included. Two studies were scored as evidence level B (moderate) and the remaining four publications were evidence level C (poor). Meta-analysis indicated fluorosis prevalence was significantly decreased following either a reduction in the concentration of fluoride or cessation of adding fluoride to the water supply (OR:6.68; 95% CI:2.48 to 18.00).

    OUTLOOK: The evidence suggests a significant decrease in the prevalence of fluorosis post cessation or reduction in the concentration of fluoride added to the water supply. However, this work demonstrates that when studies are subject to current expectations of methodological and experimental rigour, there is limited evidence with low methodological quality to determine the effect of stopping or reducing the concentration of fluoride in the water supply on dental fluorosis.

    Matched MeSH terms: Drinking Water/analysis*
  11. Huong DTM, Chai WS, Show PL, Lin YL, Chiu CY, Tsai SL, et al.
    Int J Biol Macromol, 2020 Dec 01;164:3873-3884.
    PMID: 32896561 DOI: 10.1016/j.ijbiomac.2020.09.020
    Water pollution caused by dyes has been a serious problem affecting human health and environment. The surface of polyacrylonitrile (PAN) nanofiber membranes was modified by mild hydrolysis and coupled with bovine serum albumin (BSA) obtained from the laboratory wastes, resulting in the synthesis of P-COOH and P-COOH-BSA nanofibers. The nanofibers with specific functional groups may enhance their potential applications toward the removal of ionic dyes in wastewater. Toluidine blue O (TBO) was applied as an example of cationic dye to evaluate the removal efficiency of P-COOH-BSA nanofiber. Results showed that the equilibrium dissociation constant and maximum removal capacity were 0.48 mg/mL and 434.78 mg/g, respectively, at pH 12, where the TBO removal can be explained based on Langmuir isotherm and pseudo-second-order model. Desorption studies have shown that TBO adsorbed on P-COOH-BSA protein membrane can be completely eluted with either 1 M NaCl or 50% glycerol. The results of repeated studies indicated that after five consecutive adsorption/desorption cycles, the removal efficiency of TBO can be maintained at ~97%. P-COOH-BSA has shown to be promising adsorbent in TBO dye removal from dye wastewater.
    Matched MeSH terms: Waste Water/chemistry*
  12. Vasu D, Navaneetha Pandiyaraj K, Padmanabhan PVA, Pichumani M, Deshmukh RR, Jaganathan SK
    Environ Geochem Health, 2021 Feb;43(2):649-662.
    PMID: 31679080 DOI: 10.1007/s10653-019-00446-9
    One of the major environmental issues of textile industries is the discharge of large quantities of textile effluents, which are source of contamination of water bodies on surface of earth and quality of groundwater. The effluents are toxic, non-biodegradable, carcinogenic and prodigious threats to human and aquatic creatures. Since textile effluents can be treated efficiently and effectively by various advanced oxidation processes (AOPs). Among the various AOPs, cold atmospheric pressure plasma is a promising method among many prominent techniques available to treat the effluents. In this paper, we report about the degradation of simulated effluent, namely Direct Orange-S (DO-S) aqueous solution, using nonthermal atmospheric pressure plasma jet. The plasma treatment of DO-S aqueous solution was carried out as a function of various operating parameters such as potential and treatment time. The change in properties of treated DO-S dye was investigated by means of various analytical techniques such as high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy and determination of total organic content (TOC). The reactive species present in the samples were identified using optical emission spectrometry (OES). OES results confirmed that the formation of reactive oxygen and nitrogen species during the plasma treatment in the liquid surface was responsible for dye oxidation and degradation. Degradation efficiency, as monitored by color removal efficiency, of 96% could be achieved after 1 h of treatment. Concurrently, the TOC values were found to decrease with plasma treatment, implying that the plasma treatment process enhanced the non-toxicity nature of DO-S aqueous solution. Toxicity of the untreated and plasma-treated dye solution samples was studied using Escherichia coli (E. coli) and Staphylococcus (S. aureus) organisms, which demonstrated that the plasma-treated dye solution was non-toxic in nature compared with untreated one.
    Matched MeSH terms: Water Pollutants, Chemical/metabolism*
  13. Osman NA, Ujang FA, Roslan AM, Ibrahim MF, Hassan MA
    Sci Rep, 2020 04 20;10(1):6613.
    PMID: 32313095 DOI: 10.1038/s41598-020-62815-0
    Phytoremediation is one of the environmental-friendly and cost-effective systems for the treatment of wastewater, including industrial wastewater such as palm oil mill effluent final discharge (POME FD). However, the effects of the wastewater on the phytoremediator plants, in term of growth performance, lignocellulosic composition, and the presence of nutrients and heavy metals in the plants are not yet well studied. In the present work, we demonstrated that POME FD increased the growth of P. purpureum. The height increment of P. purpureum supplied with POME FD (treatment) was 61.72% as compared to those supplied with rain water (control) which was 14.42%. For lignocellulosic composition, the cellulose percentages were 38.77 ± 0.29% (treatment) and 34.16 ± 1.01% (control), and the difference was significant. These results indicated that POME FD could be a source of plant nutrients, which P. purpureum can absorb for growth. It was also found that the heavy metals (Al, As, Cd, Co, Cr, Ni and Pb) inside the plant were below the standard limit of the World Health Organization (WHO). Since POME FD was shown to have no adverse effects on P. purpureum, further research regarding the potential application of P. purpureum following phytoremediation of POME FD such as biofuel production is warranted to evaluate its potential use to fit into the waste-to-wealth agenda.
    Matched MeSH terms: Water; Waste Water
  14. O'Brien MJ, Burslem DF, Caduff A, Tay J, Hector A
    New Phytol, 2015 Feb;205(3):1083-94.
    PMID: 25358235 DOI: 10.1111/nph.13134
    Drought regimes can be characterized by the variability in the quantity of rainfall and the duration of rainless periods. However, most research on plant response to drought has ignored the impacts of rainfall variation, especially with regard to the influence of nonstructural carbohydrates (NSCs) in promoting drought resistance. To test the hypothesis that these components of drought differentially affect NSC dynamics and seedling resistance, we tracked NSC in plant tissues of tropical tree seedlings in response to manipulations of the volume and frequency of water applied. NSC concentrations decreased in woody tissues under infrequent-high watering but increased under no watering. A faster decline of growth relative to stomatal conductance in the no watering treatment was consistent with NSC accumulation as a result of an uncoupling of growth and photosynthesis, while usage of stored NSCs in woody tissues to maintain function may account for the NSC decline under infrequent-high watering. NSCs, and specifically stem NSCs, contributed to drought resistance under severe water deficits, while NSCs had a less clear role in drought resistance to variability in water availability. The contrasting response of NSCs to water variability and deficit indicates that unique processes support seedling resistance to these components of drought.
    Matched MeSH terms: Water*
  15. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Sci Total Environ, 2019 Jun 25;671:431-442.
    PMID: 30933799 DOI: 10.1016/j.scitotenv.2019.03.243
    Endocrine disrupting compounds (EDCs) are an emerging environmental concern and commonly occur as a mixture of compounds. The EDC mixture can be more toxic than any single compound. The present study analyses EDCs in surface water in the case of an urban tropical river, the Langat River, using the multiresidue analytical method of solid phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). The Langat River is used as a drinking water source and is treated for Malaysian drinking water supply. A total of 14 EDCs i.e. five hormones, seven pharmaceuticals, one pesticide, and one plasticizer were detected. Caffeine was observed to be highest at 19.33 ng/L, followed by bisphenol A and diclofenac at 8.24 ng/L and 6.15 ng/L, respectively. Using a conservative risk quotient (RQ) method, EDCs were estimated for having negligible risks under acute and chronic exposure (RQ water raises concerns about potential human exposure to EDCs via dietary intake i.e. food and drinking water supply. Although the ecological risks are considered negligible, these risks should not be neglected in terms of future prioritization and risk management. Improvements in water quality monitoring and risk assessment in water source protection are required to support a multibarrier approach to managing drinking water supply systems for safe water supply. The present study proposes a risk management and monitoring framework for EDCs to support the aforementioned multibarrier approach.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  16. Soo YN, Tan CP, Tan PY, Khalid N, Tan TB
    J Sci Food Agric, 2021 Apr;101(6):2455-2462.
    PMID: 33034060 DOI: 10.1002/jsfa.10871
    BACKGROUND: The popularity of coffee, the second most consumed beverage in the world, contributes to the high demand for liquid non-dairy creamer (LNDC). In this study, palm olein emulsions (as LNDCs) were investigated as alternatives to the more common soybean oil-based LNDCs. LNDCs were prepared via different homogenization pressures (100-300 bar) using different types of oil (palm olein and soybean oil) and concentrations of DATEM emulsifier (5-20 g kg-1 ).

    RESULTS: Increases in homogenization pressure and emulsifier concentration were observed to have significant (P  0.05) differences between the prepared and commercial LNDCs in terms of their color, appearance, and overall acceptability.

    CONCLUSION: Shelf-stable LNDCs with qualities comparable to commercial LNDC were successfully fabricated. Valuable insights into the effects of homogenization pressure, oil type, and emulsifier concentration, as well as functionality and consumer acceptance of the LNDCs when added into black coffee, were obtained. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Water/chemistry
  17. Jaafar N, Musa SM, Azfaralariff A, Mohamed M, Yusoff AH, Lazim AM
    Chemosphere, 2020 Dec;260:127649.
    PMID: 32688323 DOI: 10.1016/j.chemosphere.2020.127649
    Post-digestion treatment is an important step during sample preparation to facilitate the removal of undigested materials for better detection of ingested microplastics. Sieving, density separation with zinc chloride solution (ZnCl2), and oil extraction protocol (OEP) have been introduced in separating microplastics from sediments. The clean-up methods are rarely highlighted in previous studies, especially in the separation of microplastics from marine biota. Thus, this study proposed and compared the suitability of three techniques, which can reduce the number of undigested particles from the digestate of GIT and gills. Our result has shown excellent removal of non-plastics materials and reduces the coloration of filter paper in all treated samples. Both sieving and density separation achieved optimum post-digestion efficiencies of >95% for both GIT and gill samples, which former showed no effect on polymer integrity. Additionally, high recovery rate was obtained for the larger size microplastics (>500 μm) with approximately 97.7% (GIT) and 95.7% (gill), respectively. Exposure to the ZnCl2 solution led to a significant loss of smaller size PET and changed the absorption spectrums of all tested polymers. Particle morphology determined by SEM revealed such exposure eroded the surface of PET fragments and elemental analysis has shown detectable peaks of zinc and chlorine appeared. Low microplastics recoveries were achieved through OPE and residue of oil was observed from the infrared spectrum of all tested polymer. The findings demonstrate sieving with size fractioning can provide exceptional removal of non-plastics materials from the digestate of GIT and gill samples.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  18. How SW, Nittami T, Ngoh GC, Curtis TP, Chua ASM
    Chemosphere, 2020 Nov;259:127444.
    PMID: 32640378 DOI: 10.1016/j.chemosphere.2020.127444
    In this study, we assessed and optimized a low-dissolved-oxygen oxic-anoxic (low-DO OA) process to achieve a low-cost and sustainable solution for wastewater treatment systems in the developing tropical countries treating low chemical oxygen demand-to-nitrogen ratio (COD/N) wastewater. The low-DO OA process attained complete ammonia removal and the effluent nitrate nitrogen (NO3-N) was below 0.3 mg/L. The recommended hydraulic retention time and sludge retention time (SRT) were 16 h and 20 days, respectively. The 16S rRNA sequencing data revealed that long SRT (20 days) encouraged the growth of nitrite-oxidizing bacteria (NOB) affiliated with "Candidatus Nitrospira defluvii". Comammox made up 10-20% of the Nitrospira community. NOB and comammox related to Nitrospira were enriched at long SRT (20 days) to achieve good low-DO nitrification performance. The low-DO OA process was efficient and has simpler design than conventional processes, which are keys for sustainable wastewater treatment systems in the developing countries treating low COD/N wastewater.
    Matched MeSH terms: Waste Water/chemistry
  19. Ito T, Okada K, Leong KH, Hirai D, Hayashi Y, Kumada S, et al.
    Chem Pharm Bull (Tokyo), 2019;67(3):271-276.
    PMID: 30828004 DOI: 10.1248/cpb.c18-00888
    The different states of water incorporated in wet granules were studied by a low-field benchtop 1H-NMR time-domain NMR (TD-NMR) instrument. Wet granules consisting different fillers [cornstarch (CS), microcrystalline cellulose (MCC), and D-mannitol (MAN)] with different water contents were prepared using a high-speed granulator, and then their spin-spin relaxation time (T2) was measured using the NMR relaxation technique. The experimental T2 relaxation curves were analyzed by the two-component curve fitting, and then the individual T2 relaxation behaviors of solid and water in wet granules were identified. According to the observed T2 values, it was confirmed that the molecular mobility of water in CS and MCC granules was more restricted than that in the MAN granule. The state of water appeared to be associated with the drying efficiency and moisture absorption capacity of wet granules. Thus, it was confirmed that the state of water significantly affected the wet granulation process and the characteristics of the resultant granules. In the final phase of this study, the effects of binders on the molecular mobility of water in granulation fluids and wet granules were examined. The state of water in granulation fluids was substantially changed by changing the binders. The difference was still detected in wet granules prepared by addition of these fluids to the fillers. In conclusion, TD-NMR can offer valuable knowledge on wet granulation from the viewpoint of molecular mobility of water.
    Matched MeSH terms: Water/chemistry*
  20. Zainal Abidin MH, Abd Halim KB, Huyop F, Tengku Abdul Hamid TH, Abdul Wahab R, Abdul Hamid AA
    J Mol Graph Model, 2019 07;90:219-225.
    PMID: 31103914 DOI: 10.1016/j.jmgm.2019.05.003
    Dehalogenase E (DehE) is a non-stereospecific enzyme produced by the soil bacterium, Rhizobium sp. RC1. Till now, the catalytic mechanism of DehE remains unclear although several literature concerning its structure and function are available. Since DehE is non-stereospecific, the enzyme was hypothesized to follow a 'direct attack mechanism' for the catalytic breakdown of a haloacid. For a molecular insight, the DehE modelled structure was docked in silico with the substrate 2-chloropropionic acid (2CP) in the active site. The ideal position of DehE residues that allowed a direct attack mechanism was then assessed via molecular dynamics (MD) simulation. It was revealed that the essential catalytic water was hydrogen bonded to the 'water-bearer', Asn114, at a relatively constant distance of ∼2.0 Å after 50 ns. The same water molecule was also closely sited to the catalytic Asp189 at an average distance of ∼2.0 Å, signifying the imperative role of the latter to initiate proton abstraction for water activation. This reaction was crucial to promote a direct attack on the α-carbon of 2CP to eject the halide ion. The water molecule was oriented favourably towards the α-carbon of 2CP at an angle of ∼75°, mirrored by the formation of stable enzyme-substrate orientations throughout the simulation. The data therefore substantiated that the degradation of a haloacid by DehE followed a 'direct attack mechanism'. Hence, this study offers valuable information into future advancements in the engineering of haloacid dehalogenases with improved activity and selectivity, as well as functionality in solvents other than water.
    Matched MeSH terms: Water/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links