Displaying publications 2801 - 2820 of 6727 in total

Abstract:
Sort:
  1. Arfan M, Siddiqui SZ, Abbasi MA, Rehman A, Shah SAA, Ashraf M, et al.
    Pak J Pharm Sci, 2018 Nov;31(6 (Supplementary):2697-2708.
    PMID: 30587482
    The research was aimed to unravel the enzymatic potential of sequentially transformed new triazoles by chemically converting 4-methoxybenzoic acid via Fischer's esterification to 4-methoxybenzoate which underwent hydrazinolysis and the corresponding hydrazide (1) was cyclized with phenyl isothiocyanate (2) via 2-(4-methoxybenzoyl)-N-phenylhydrazinecarbothioamide (3); an intermediate to 5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazol-3-thiol (4). The electrophiles; alkyl halides 5(a-g) were further reacted with nucleophilic S-atom to attain a series of S-alkylated 5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols 6(a-g). Characterization of synthesized compounds was accomplished by contemporary spectral techniques such as FT-IR, 1H-NMR, 13C-NMR and EI-MS. Excellent cholinesterase inhibitory potential was portrayed by 3-(n-heptylthio)-5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole; 6g against AChE (IC50; 38.35±0.62μM) and BChE (IC50; 147.75±0.67μM) enzymes. Eserine (IC50; 0.04±0.01μM) was used as reference standard. Anti-proliferative activity results ascertained that derivative encompassing long straight chain substituted at S-atom of the moiety was the most potent with 4.96 % cell viability (6g) at 25μM and with 2.41% cell viability at 50μMamong library of synthesized derivatives. In silico analysis also substantiated the bioactivity statistics.
  2. Mahmood T, Vu TT, Campos-Arceiz A, Akrim F, Andleeb S, Farooq M, et al.
    PeerJ, 2021;9:e10738.
    PMID: 33628635 DOI: 10.7717/peerj.10738
    Ecosystem functioning is dependent a lot on large mammals, which are, however, vulnerable and facing extinction risks due to human impacts mainly. Megafauna of Asia has been declining for a long, not only in numbers but also in their distribution ranges. In the current study, we collected information on past and current occurrence and distribution records of Asia's megafauna species. We reconstructed the historical distribution ranges of the six herbivores and four carnivores for comparison with their present ranges, to quantify spatially explicit levels of mega-defaunation. Results revealed that historically the selected megafauna species were more widely distributed than at current. Severe range contraction was observed for the Asiatic lion, three rhino species, Asian elephant, tigers, and tapirs. Defaunation maps generated have revealed the vanishing of megafauna from parts of the East, Southeast, and Southwest Asia, even some protected Areas losing up to eight out of ten megafaunal species. These defaunation maps can help develop future conservation policies, to save the remaining distribution ranges of large mammals.
  3. Ramli US, Tahir NI, Rozali NL, Othman A, Muhammad NH, Muhammad SA, et al.
    Molecules, 2020 Jun 25;25(12).
    PMID: 32630515 DOI: 10.3390/molecules25122927
    Palm oil production from oil palm (Elaeis guineensis Jacq.) is vital for the economy of Malaysia. As of late, sustainable production of palm oil has been a key focus due to demand by consumer groups, and important progress has been made in establishing standards that promote good agricultural practices that minimize impact on the environment. In line with the industrial goal to build a traceable supply chain, several measures have been implemented to ensure that traceability can be monitored. Although the palm oil supply chain can be highly complex, and achieving full traceability is not an easy task, the industry has to be proactive in developing improved systems that support the existing methods, which rely on recorded information in the supply chain. The Malaysian Palm Oil Board (MPOB) as the custodian of the palm oil industry in Malaysia has taken the initiative to assess and develop technologies that can ensure authenticity and traceability of palm oil in the major supply chains from the point of harvesting all the way to key downstream applications. This review describes the underlying framework related to palm oil geographical traceability using various state-of-the-art analytical techniques, which are also being explored to address adulteration in the global palm oil supply chain.
  4. Musa I, Rafii MY, Ahmad K, Ramlee SI, Md Hatta MA, Oladosu Y, et al.
    Plants (Basel), 2020 Nov 15;9(11).
    PMID: 33203189 DOI: 10.3390/plants9111583
    Grafting is regarded as an integral component of sustainable vegetable production. It is important in the management of soil-borne diseases, and reports suggest that grafting with viable rootstocks can enhance crop growth and yield. This research was conducted using splices and cleft grafting techniques to investigate graft compatibility among varieties of high yielding eggplant scion (MCV1, MCV2, CCV1, CCV2, CCV3, NCV, and TCV) grafted onto wild rootstocks (MWR, BWR, and TWR) to study their morphophysiological and yield characteristics. High yielding scions grafted onto wild relative rootstocks were compared with two controls including self-grafted and non-grafted. All the scion had a high rate of germination (≥95%) and remarkable graft success (100%) was recorded in MCV1, MCV2, and TCV using the cleft techniques. Generally, the use of rootstocks resulted in higher total and marketable fruit yield compared to the non-grafted and self-grafted scion plants, respectively. In particular, MWR and TWR rootstock conferred the highest vigour to the scion, resulting in the highest values recorded for total and marketable fruit yield, number of fruits per plant and average fruit weight. A similar result was obtained in fruit length and diameter, where long and wide fruits were observed in scions grafted onto MWR and TWR rootstocks, respectively. Grafting of high yielding eggplant scion onto resistant MWR, BWR and TWR eggplant rootstock was found to be beneficial for eggplant cultivation. The remarkable compatibility and vigour of the rootstock with scion led to the improvement in total and marketable yield of the fruits. As such, it can be concluded that the use of wild relative rootstocks of eggplant species can be a valuable method of improving eggplant production.
  5. Taha M, Rahim F, Ali M, Khan MN, Alqahtani MA, Bamarouf YA, et al.
    Molecules, 2019 Apr 18;24(8).
    PMID: 31003424 DOI: 10.3390/molecules24081528
    Chromen-4-one substituted oxadiazole analogs 1-19 have been synthesized, characterized and evaluated for β-glucuronidase inhibition. All analogs exhibited a variable degree of β-glucuronidase inhibitory activity with IC50 values ranging in between 0.8 ± 0.1-42.3 ± 0.8 μM when compared with the standard d-saccharic acid 1,4 lactone (IC50 = 48.1 ± 1.2 μM). Structure activity relationship has been established for all compounds. Molecular docking studies were performed to predict the binding interaction of the compounds with the active site of enzyme.
  6. Mahmud MA, Hazrin M, Muhammad EN, Mohd Hisyam MF, Awaludin SM, Abdul Razak MA, et al.
    Geriatr Gerontol Int, 2020 Dec;20 Suppl 2:63-67.
    PMID: 33370852 DOI: 10.1111/ggi.14033
    AIM: This study aimed to determine the factors that influence perceived social support among older adults in Malaysia.

    METHODS: We used the 11-item Duke Social Support Index to assess perceived social support through a face-to-face interview. Higher scores indicate better social support. Linear regression analysis was carried out to determine the factors that influence perceived social support by adapting the conceptual model of social support determinants and its impact on health.

    RESULTS: A total of 3959 respondents aged ≥60 years completed the Duke Social Support Index. The estimated mean Duke Social Support Index score was 27.65 (95% CI 27.36-27.95). Adjusted for confounders, the factors found to be significantly associated with social support among older adults were monthly income below RM1000 (-0.8502, 95% CI -1.3523, -0.3481), being single (-0.5360, 95% CI -0.8430, -0.2290), no depression/normal (2.2801, 95% CI 1.6666-2.8937), absence of activities of daily living (0.9854, 95% CI 0.5599-1.4109) and dependency in instrumental activities of daily living (-0.3655, 95% CI -0.9811, -0.3259).

    CONCLUSION: This study found that low income, being single, no depression, absence of activities of daily living and dependency in instrumental activities of daily living were important factors related to perceived social support among Malaysian older adults. Geriatr Gerontol Int 2020; 20: 63-67.

  7. Ali S, Irfan M, Muhammad Niazi U, Rani AMA, Shah I, Legutko S, et al.
    Materials (Basel), 2021 Jun 13;14(12).
    PMID: 34199244 DOI: 10.3390/ma14123270
    The powder metallurgy (PM) technique has been widely used for producing different alloy compositions by the addition of suitable reinforcements. PM is also capable of producing desireable mechanical and physical properties of the material by varying process parameters. This research investigates the addition of titanium and niobium in a 316L stainless steel matrix for potential use in the biomedical field. The increase of sintering dwell time resulted in simultaneous sintering and surface nitriding of compositions, using nitrogen as the sintering atmosphere. The developed alloy compositions were characterized using OM, FESEM, XRD and XPS techniques for quantification of the surface nitride layer and the nitrogen absorbed during sintering. The corrosion resistance and cytotoxicity assessments of the developed compositions were carried out in artificial saliva solution and human oral fibroblast cell culture, respectively. The results indicated that the nitride layer produced during sintering increased the corrosion resistance of the alloy and the developed compositions are non-cytotoxic. This newly developed alloy composition and processing technique is expected to provide a low-cost solution to implant manufacturing.
  8. Ahmad P, Khandaker MU, Muhammad N, Rehman F, Ullah Z, Khan G, et al.
    Appl Radiat Isot, 2020 Dec;166:109404.
    PMID: 32956924 DOI: 10.1016/j.apradiso.2020.109404
    The shortcomings in Boron neutron capture therapy (BNCT) and Hyperthermia for killing the tumor cell desired for the synthesis of a new kind of material suitable to be first used in BNCT and later on enable the conditions for Hyperthermia to destroy the tumor cell. The desire led to the synthesis of large band gap semiconductor nano-size Boron-10 enriched crystals of hexagonal boron nitride (10BNNCs). The contents of 10BNNCs are analyzed with the help of x-ray photoelectron spectroscopy (XPS) and counter checked with Raman and XRD. The 10B-contents in 10BNNCs produce 7Li and 4He nuclei. A Part of the 7Li and 4He particles released in the cell is allowed to kill the tumor (via BNCT) whereas the rest produce electron-hole pairs in the semiconductor layer of 10BNNCs suggested to work in Hyperthermia with an externally applied field.
  9. Rasool N, Kanwal A, Rasheed T, Ain Q, Mahmood T, Ayub K, et al.
    Int J Mol Sci, 2016;17(7).
    PMID: 27367666 DOI: 10.3390/ijms17070912
    Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity.
  10. Noreen T, Taha M, Imran S, Chigurupati S, Rahim F, Selvaraj M, et al.
    Bioorg Chem, 2017 06;72:248-255.
    PMID: 28482265 DOI: 10.1016/j.bioorg.2017.04.010
    Twenty five derivatives of indole carbohydrazide (1-25) had been synthesized. These compounds were characterized using 1H NMR and EI-MS, and further evaluated for their α-amylase inhibitory potential. The analogs (1-25) showed varying degree of α-amylase inhibitory potential. ranging between 9.28 and 599.0µM when compared with standard acarbose having IC50 value 8.78±0.16µM. Six analogs, 25 (IC50=9.28±0.153µM), 22 (IC50=9.79±0.43µM), 4 (IC50=11.08±0.357µM), 1 (IC50=12.65±0.169µM), 8 (IC50=21.37±0.07µM) and 14 (IC50=43.21±0.14µM) showed potent α-amylase inhibition as compared to the standard acarbose (IC50=8.78±0.16µM). All other analogs displayed good to moderate inhibitory potential. Structure-activity relationship was established through the interaction of the active compounds with enzyme active site with the help of docking studies.
  11. Mahpara S, Zainab A, Ullah R, Kausar S, Bilal M, Latif MI, et al.
    PLoS One, 2022;17(2):e0262937.
    PMID: 35148345 DOI: 10.1371/journal.pone.0262937
    Wheat is an important crop, used as staple food in numerous countries around the world. However, wheat productivity is low in the developing world due to several biotic and abiotic stresses, particularly drought stress. Non-availability of drought-tolerant wheat genotypes at different growth stages is the major constraint in improving wheat productivity in the developing world. Therefore, screening/developing drought-tolerant genotypes at different growth stages could improve the productivity of wheat. This study assessed seed germination and seedling growth of eight wheat genotypes under polyethylene glycol (PEG)-induced stress. Two PEG-induced osmotic potentials (i.e., -0.6 and -1.2 MPa) were included in the study along with control (0 MPa). Wheat genotypes included in the study were 'KLR-16', 'B6', 'J10', '716', 'A12', 'Seher', 'KTDH-16', and 'J4'. Data relating to seed germination percentage, root and shoot length, fresh and dry weight of roots and shoot, root/shoot length ratio and chlorophyll content were recorded. The studied parameters were significantly altered by individual and interactive effects of genotypes and PEG-induced osmotic potentials. Seed germination and growth parameters were reduced by osmotic potentials; however, huge differences were noted among genotypes. A reduction of 32.83 to 53.50% was recorded in seed germination, 24.611 to 47.75% in root length, 37.83 to 53.72% in shoot length, and 53.35 to 65.16% in root fresh weight. The genotypes, 'J4', 'KLR-16' and 'KTDH-16', particularly 'J4' better tolerated increasing osmotic potentials compared to the rest of the genotypes included in the study. Principal component analysis segregated these genotypes from the rest of the genotypes included in the study indicated that these can be used in the future studies to improve the drought tolerance of wheat crop. The genotype 'J4' can be used as a breeding material to develop drought resistant wheat genotypes.
  12. Ahmad P, Khandaker MU, Khan A, Rehman F, Din SU, Ali H, et al.
    Biomed Res Int, 2022;2022:3605054.
    PMID: 36420094 DOI: 10.1155/2022/3605054
    A simple process based on the dual roles of both magnesium oxide (MgO) and iron oxide (FeO) with boron (B) as precursors and catalysts has been developed for the synthesis of borate composites of magnesium and iron (Mg2B2O5-Fe3BO6) at 1200°C. The as-synthesized composites can be a single material with the improved and collective properties of both iron borates (Fe3BO6) and magnesium borates (Mg2B2O5). At higher temperatures, the synthesized Mg2B2O5-Fe3BO6 composite is found thermally more stable than the single borates of both magnesium and iron. Similarly, the synthesized composites are found to prevent the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) pathogenic bacteria on all the tested concentrations. Moreover, the inhibitory effect of the synthesized composite increases with an increase in concentration and is more pronounced against S. aureus as compared to E. coli.
  13. Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, et al.
    Chemosphere, 2022 Jan;287(Pt 1):131956.
    PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956
    Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
  14. Hafeez F, Abbas M, Zia K, Ali S, Farooq M, Arshad M, et al.
    PLoS One, 2021;16(10):e0257952.
    PMID: 34644343 DOI: 10.1371/journal.pone.0257952
    Wheat (Triticum aestivum L.) production is significantly altered by the infestation of sucking insects, particularly aphids. Chemical sprays are not recommended for the management of aphids as wheat grains are consumed soon after crop harvests. Therefore, determining the susceptibility of different wheat genotypes and selecting the most tolerant genotype could significantly lower aphid infestation. This study evaluated the susceptibility of six different wheat genotypes ('Sehar-2006', 'Shafaq-2006', 'Faisalabad-2008', 'Lasani-2008', 'Millat-2011' and 'Punjab-2011') to three aphid species (Rhopalosiphum padi Linnaeus, Schizaphis graminum Rondani, Sitobion avenae Fabricius) at various growth stages. Seed dressing with insecticides and plant extracts were also evaluated for their efficacy to reduce the incidence of these aphid species. Afterwards, an economic analysis was performed to compute cost-benefit ratio and assess the economic feasibility for the use of insecticides and plant extracts. Aphids' infestation was recorded from the seedling stage and their population gradually increased as growth progressed towards tillering, stem elongation, heading, dough and ripening stages. The most susceptible growth stage was heading with 21.89 aphids/tiller followed by stem elongation (14.89 aphids/tiller) and dough stage (13.56 aphids/tiller). The genotype 'Punjab-2011' recorded the lower aphid infestation than 'Faisalabad-2008', 'Sehar-2006', 'Lasani-2008' and 'Shafaq-2006'. Rhopalosiphum padi appeared during mid-February, whereas S. graminum and S. avenae appeared during first week of March. Significant differences were recorded for losses in number of grains/spike and 1000-grain weight among tested wheat genotypes. The aphid population had non-significant correlation with yield-related traits. Hicap proved the most effective for the management of aphid species followed by Hombre and Husk among tested seed dressers, while Citrullus colocynthis L. and Moringa oleifera Lam. plant extracts exhibited the highest efficacy among different plant extracts used in the study. Economic analysis depicted that use of Hombre and Hicap resulted in the highest income and benefit cost ratio. Therefore, use of genotype Punjab-2011' and seed dressing with Hombre and Hicap can be successfully used to lower aphid infestation and get higher economic returns for wheat crop.
  15. Taha M, Ismail NH, Imran S, Anouar EH, Selvaraj M, Jamil W, et al.
    Eur J Med Chem, 2017 Jan 27;126:1021-1033.
    PMID: 28012342 DOI: 10.1016/j.ejmech.2016.12.019
    Molecular hybridization yielded phenyl linked oxadiazole-benzohydrazones hybrids 6-35 and were evaluated for their antileishmanial potentials. Compound 10, a 3,4-dihydroxy analog with IC50 value of 0.95 ± 0.01 μM, was found to be the most potent antileishmanial agent (7 times more active) than the standard drug pentamidine (IC50 = 7.02 ± 0.09 μM). The current series 6-35 conceded in the identification of thirteen (13) potent antileishmanial compounds with the IC50 values ranging between 0.95 ± 0.01-78.6 ± 1.78 μM. Molecular docking analysis against pteridine reductase (PTR1) were also performed to probe the mode of action. Selectivity index showed that compounds with higher number of hydroxyl groups have low selectivity index. Theoretical stereochemical assignment was also done for certain derivatives by using density functional calculations.
  16. Bala AA, Malami S, Muhammad YA, Kurfi B, Raji I, Salisu SM, et al.
    Toxicon X, 2022 Jun;14:100122.
    PMID: 35402895 DOI: 10.1016/j.toxcx.2022.100122
    Snakebite envenoming (SBE) is a neglected public health problem, especially in Asia, Latin America and Africa. There is inadequate knowledge of venom toxicokinetics especially from African snakes. To mimic a likely scenario of a snakebite envenoming, we used an enzyme-linked immunosorbent assay (ELISA) approach to study the toxicokinetic parameters in rabbits, following a single intramuscular (IM) administration of Northern Nigeria Naja nigricollis venom. We used a developed and validated non-compartmental approach in the R package PK to determine the toxicokinetic parameters of the venom and subsequently used pharmacometrics modelling to predict the movement of the toxin within biological systems. We found that N. nigricollis venom contained sixteen venom protein families following a mass spectrometric analysis of the whole venom. Most of these proteins belong to the three-finger toxins family (3FTx) and venom phospholipase A2 (PLA2) with molecular weight ranging from 3 to 16 kDa. Other venom protein families were in small proportions with higher molecular weights. The N. nigricollis venom was rapidly absorbed at 0.5 h, increased after 1 h and continued to decrease until the 16th hour (Tmax), where maximum concentration (Cmax) was observed. This was followed by a decrease in concentration at the 32nd hour. The venom of N. nigricollis was found to have high volume of distribution (1250 ± 245 mL) and low clearance (29.0 ± 2.5 mL/h) with an elimination half-life of 29 h. The area under the curve (AUC) showed that the venom remaining in the plasma over 32 h was 0.0392 ± 0.0025 mg h.L-1, and the mean residence time was 43.17 ± 8.04 h. The pharmacometrics simulation suggests that the venom toxins were instantly and rapidly absorbed into the extravascular compartment and slowly moved into the central compartment. Our study demonstrates that Nigerian N. nigricollis venom contains low molecular weight toxins that are well absorbed into the blood and deep tissues. The venom could be detected in rabbit blood 48 h after intramuscular envenoming.
  17. Amin M, Yousuf M, Attaullah M, Ahmad N, Azra MN, Lateef M, et al.
    Environ Technol, 2023 Jun;44(14):2148-2156.
    PMID: 34962184 DOI: 10.1080/09593330.2021.2024276
    Organophosphates (OPs) and synthetic pyrethroids (SPs) are the most popular broad spectrum pesticides, used in agriculture as they have a strong pesticidal activity while also being biodegradable in the environment. The present study aimed to demonstrate the effects of these pesticides on the Acetylcholinesterase (AChE) activity in brain, gills and body muscles of Oreochromis niloticus - an important enzyme for the assessment and biomonitoring pollution caused by neurotoxins in the environment. The fish were exposed for 24 and 48 h to the LC0 concentrations of the malathion (1.425 mg/L), the chlorpyrifos (0.125 mg/L) and the λ-cyhalothrin (0.0039 mg/L), respectively. The activity of the AChE was significantly increased (p 
  18. Mazlan N, Shukhairi SS, Muhammad Husin MJ, Shalom J, Saud SN, Abdullah Sani MS, et al.
    Heliyon, 2023 Jun;9(6):e16822.
    PMID: 37303562 DOI: 10.1016/j.heliyon.2023.e16822
    Plastic pollution is an emerging environmental concern in recent years due to continuous mass production and its slow degradation. Microplastics measuring between 5 mm and 1 μm are being ingested by marine animals and eventually by human consumption in form of seafood. The aim of this research was to evaluate microplastics isolated from sea cucumber Acaudina molpadioides in Pulau Langkawi. A total of 20 animals were collected and their gastrointestinal tract were digested using NaOH. Microplastics were isolated, filtered and identified through microscopic examination based on the colour, shape and size. The chemical composition of microplastics were further analyzed by FTIR to identify the functional group of polymers. A total of 1652 microplastics were found in A. molpadioides. Fibres (99.4%) and black color (54.4%) were the majority of microplastics observed in terms of shapes and colors. The size range within 0.5-1 μm and 1-2 μm were the highest abundance observed. There were two identified polymer types of microplastics obtained through FTIR which were polyethylene (PE) and polymethyl methacrylate (PMMA). In conclusion, microplastics were isolated from the gastrointestinal tract of A. molpadioides indicating that the animals were contaminated. Further research can be done on the toxicity effects of these microplastics towards human upon consumption of these animals as seafood.
  19. Rasool MF, Rehman AU, Khan I, Latif M, Ahmad I, Shakeel S, et al.
    PLoS One, 2023;18(1):e0276277.
    PMID: 36693042 DOI: 10.1371/journal.pone.0276277
    Patients suffering from chronic diseases are more likely to experience pDDIs due to older age, prolonged treatment, severe illness and greater number of prescribed drugs. The objective of the current study was to assess the prevalence of pDDIs and risk factors associated with occurrence of pDDIs in chronic disease patients attending outpatient clinics for regular check-ups. Patients suffering from diabetes, chronic obstructive pulmonary disease (COPD), stroke and osteoporosis were included in the study. This study was a cross sectional, observational, prospective study that included 337 patients from outpatient clinics of respiratory ward, cardiac ward and orthopedic ward of Nishter Hospital Multan, Pakistan. The mean number of interactions per patient was 1.68. A greater risk for occurrence of pDDI was associated with older age ≥ 60 years (OR = 1.95, 95% CI = 1.44-2.37, p<0.001); polypharmacy (≥ 5 drugs) (OR = 3.74, 95% CI 2.32-4.54, p<0.001); overburden (OR = 2.23, 95% CI = 1.64-3.16, p<0.01); CCI score (OR = 1.28, 95% CI = 1.04-1.84, p<0.001); multiple prescribers to one patient (OR = 1.18, 95% CI = 1.06-1.41, p<0.01); and trainee practitioner (OR = 1.09, 95% CI = 1.01-1.28, p<0.01). Old age, polypharmacy, overburden healthcare system, higher comorbidity index, multiple prescribers to one patient and trainee practitioner were associated with increased risk of occurrence of pDDIs in chronic disease patients.
  20. Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, et al.
    Environ Int, 2019 06;127:785-800.
    PMID: 31039528 DOI: 10.1016/j.envint.2019.03.022
    BACKGROUND: Rare earth elements (REEs) are gaining attention due to rapid rise of modern industries and technological developments in their usage and residual fingerprinting. Cryptic entry of REEs in the natural resources and environment is significant; therefore, life on earth is prone to their nasty effects. Scientific sectors have expressed concerns over the entry of REEs into food chains, which ultimately influences their intake and metabolism in the living organisms.

    OBJECTIVES: Extensive scientific collections and intensive look in to the latest explorations agglomerated in this document aim to depict the distribution of REEs in soil, sediments, surface waters and groundwater possibly around the globe. Furthermore, it draws attention towards potential risks of intensive industrialization and modern agriculture to the exposure of REEs, and their effects on living organisms. It also draws links of REEs usage and their footprints in natural resources with the major food chains involving plants, animals and humans.

    METHODS: Scientific literature preferably spanning over the last five years was obtained online from the MEDLINE and other sources publishing the latest studies on REEs distribution, properties, usage, cycling and intrusion in the environment and food-chains. Distribution of REEs in agricultural soils, sediments, surface and ground water was drawn on the global map, together with transport pathways of REEs and their cycling in the natural resources.

    RESULTS: Fourteen REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th and Yb) were plighted in this study. Wide range of their concentrations has been detected in agricultural soils (<15.9-249.1 μg g-1) and in groundwater (<3.1-146.2 μg L-1) at various sites worldwide. They have strong tendency to accumulate in the human body, and thus associated with kidney stones. The REEs could also perturb the animal physiology, especially affecting the reproductive development in both terrestrial and aquatic animals. In plants, REEs might affect the germination, root and shoot development and flowering at concentration ranging from 0.4 to 150 mg kg-1.

    CONCLUSIONS: This review article precisely narrates the current status, sources, and potential effects of REEs on plants, animals, humans health. There are also a few examples where REEs have been used to benefit human health. However, still there is scarce information about threshold levels of REEs in the soil, aquatic, and terrestrial resources as well as living entities. Therefore, an aggressive effort is required for global action to generate more data on REEs. This implies we prescribe an urgent need for inter-disciplinary studies about REEs in order to identify their toxic effects on both ecosystems and organisms.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links