MATERIALS AND METHODS: Matured, healthy and disease-free leaves of Eucalyptus globulus were collected. The leaves were washed under tap water and finally dried in an oven at a temperature of 45°C for 48 hours. The dried plants were ground in an electric blender to make them into a powder. The powder was mixed with 100% ethanol and kept it inside a shaker overnight at 35°C. The mixture was centrifuged for 10 minutes at 2,500 rpm. Three different concentrations (10%, 50%, and 100% v/v) were used as antibacterial agents. Chlorhexidine (0.2%) was considered as positive control and dimethyl formamide was considered as negative control against P. gingivalis and A. actinomycetemcomitans. The disc diffusion method was used to determine the extract's antibacterial activity against the test organisms. A digital Vernier caliper was used to measure the diameter of antibacterial activity showing the zone of inhibition in millimeters.
RESULTS: Eucalyptus globulus with 100% concentration showed a maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis (5.38 ± 0.32 mm, 4.82 ± 0.11 mm) followed by 50% and 10% accordingly. The negative control of dimethyl formamide showed a zone of inhibition of 0.48 ± 0.96 mm and 0.63 ± 0.20 mm against A. actinomycetemcomitans and P. gingivalis. The positive control of 0.2% chlorhexidine showed a zone of inhibition of 8.46 ± 1.02 mm and 7.18 ± 0.54 mm against A. actinomycetemcomitans and P. gingivalis. The ANOVA test showed a highly significant antibacterial efficacy in 0.2% chlorhexidine and 100% concentration Eucalyptus globulus.
CONCLUSION: A significant maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis was showed by 100% concentration of Eucalyptus globulus.
CLINICAL SIGNIFICANCE: Other than the systemic diseases treatment, Eucalyptus globulus also serves as an effective promising alternative to antibiotics in the prevention of oral infections because of the natural phytochemicals existing in them.
METHODS: A systematic literature search was performed using electronic databases, such as EMBASE, PubMed/Medline, CINAHL, NHS and CEA Registry from 2000 until 2017. The quality of each included study was assessed using Joanna Briggs Institute Critical Appraisal Checklist for Economic Evaluations and Consolidated Health Economic Evaluation Reporting Standards Statement checklist.
RESULTS: Of the 313 papers retrieved, five papers were included in this review after assessment for eligibility. The majority of the studies were cost-effectiveness studies, comparing ASP to standard care. Four included economic studies were conducted from the provider (hospital) perspective while the other study was from payer (National Health System) perspective. The cost included for economic analysis were as following: personnel costs, warded cost, medical costs, procedure costs and other costs.
CONCLUSIONS: All studies were generally well-conducted with relatively good quality of reporting. Implementing ASP in the hospital setting may be cost-effective. However, comprehensive cost-effectiveness data for ASP remain relatively scant, underlining the need for more prospective clinical and epidemiological studies to incorporate robust economic analyses into clinical decisions. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
METHODS: Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated.
RESULTS: B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds.
CONCLUSION: Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.