Displaying publications 341 - 360 of 552 in total

Abstract:
Sort:
  1. Ikram NK, Durrant JD, Muchtaridi M, Zalaludin AS, Purwitasari N, Mohamed N, et al.
    J Chem Inf Model, 2015 Feb 23;55(2):308-16.
    PMID: 25555059 DOI: 10.1021/ci500405g
    Recent outbreaks of highly pathogenic and occasional drug-resistant influenza strains have highlighted the need to develop novel anti-influenza therapeutics. Here, we report computational and experimental efforts to identify influenza neuraminidase inhibitors from among the 3000 natural compounds in the Malaysian-Plants Natural-Product (NADI) database. These 3000 compounds were first docked into the neuraminidase active site. The five plants with the largest number of top predicted ligands were selected for experimental evaluation. Twelve specific compounds isolated from these five plants were shown to inhibit neuraminidase, including two compounds with IC50 values less than 92 μM. Furthermore, four of the 12 isolated compounds had also been identified in the top 100 compounds from the virtual screen. Together, these results suggest an effective new approach for identifying bioactive plant species that will further the identification of new pharmacologically active compounds from diverse natural-product resources.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  2. Ismail M, Bagalkotkar G, Iqbal S, Adamu HA
    Molecules, 2012 May 14;17(5):5745-56.
    PMID: 22628046 DOI: 10.3390/molecules17055745
    Different parts of four edible medicinal plants (Casearia capitellata, Baccaurea motleyana, Phyllanthus pulcher and Strobilanthus crispus), indigenous to Malaysia, were extracted in different solvents, sequentially. The obtained 28 extracts were evaluated for their in vitro anticancer properties, using the MTS assay, on four human cancer cell lines: colon (HT-29), breast (MCF-7), prostate (DU-145) and lung (H460) cancers. The best anticancer activity was observed for the ethyl acetate (EA) extract of Casearia capitellata leaves on MCF-7 cell lines with IC₅₀ 2.0 μg/mL and its methanolic (MeOH) extract showed an outstanding activity against lung cancer cell lines. Dichloromethane (DCM) extract of Phyllanthus pulcher aerial parts showed the highest anticancer activity against DU-145 cell lines, while significant activity was exhibited by DCM extract of Phyllanthus pulcher roots on colon cancer cell lines with IC50 value of 8.1 μg/mL. Total phenolic content (TPC) ranged over 1-40 mg gallic acid equivalents (GAE)/g. For all the samples, highest yields of phenolics were obtained for MeOH extracts. Among all the extracts analyzed, the MeOH extracts of Strobilanthus crispus leaves exhibited the highest TPC than other samples (p < 0.05). This study shows that the nature of phenol determines its anticaner activity and not the number of phenols present.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  3. Ahmad R, Baharum SN, Bunawan H, Lee M, Mohd Noor N, Rohani ER, et al.
    Molecules, 2014 Nov 20;19(11):19220-42.
    PMID: 25420073 DOI: 10.3390/molecules191119220
    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  4. Nejat N, Valdiani A, Cahill D, Tan YH, Maziah M, Abiri R
    ScientificWorldJournal, 2015;2015:982412.
    PMID: 25667940 DOI: 10.1155/2015/982412
    Catharanthus roseus (L.) known as Madagascar periwinkle (MP) is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs), vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spiroplasmas, and serves as a model for their study. Botanical information with respect to synonyms, vernacular names, cultivars, floral morphology, and reproduction adds to understanding of the plant while the geography and ecology of periwinkle illustrate the organism's ubiquity. Good agronomic practices ensure generous propagation of healthy plants that serve as a source of bioactive compounds and multitudinous horticultural applications. The correlation between genetic diversity, variants, and TIA production exists. MP is afflicted with a whole range of diseases that have to be properly managed. The ethnobotanical significance of MP is exemplified by its international usage as a traditional remedy for abundant ailments and not only for cancer. TIAs are present only in micro quantities in the plant and are highly poisonous per se rendering a challenge for researchers to increase yield and reduce toxicity.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  5. Hassan LE, Ahamed MB, Majid AS, Baharetha HM, Muslim NS, Nassar ZD, et al.
    BMC Complement Altern Med, 2014 Oct 20;14:406.
    PMID: 25331269 DOI: 10.1186/1472-6882-14-406
    BACKGROUND: Consumption of medicinal plants to overcome diseases is traditionally belongs to the characteristics of most cultures on this earth. Sudan has been a host and cradle to various ancient civilizations and developed a vast knowledge on traditional medicinal plants. The present study was undertaken to evaluate the antioxidant, antiangiogenic and cytotoxic activities of six Sudanese medicinal plants which have been traditionally used to treat neoplasia. Further the biological activities were correlated with phytochemical contents of the plant extracts.

    METHODS: Different parts of the plants were subjected to sequential extraction method. Cytotoxicity of the extracts was determined by dimethylthiazol-2-yl)- 2,5diphenyl tetrazolium bromide (MTT) assay on 2 human cancer (colon and breast) and normal (endothelial and colon fibroblast) cells. Anti-angiogenic potential was tested using ex vivo rat aortic ring assay. DPPH (1,1-diphenyl-2-picrylhydrazyl) assay was conducted to screen the antioxidant capabilities of the extracts. Finally, total phenolic and flavonoid contents were estimated in the extracts using colorimetric assays.

    RESULTS: The results indicated that out of 6 plants tested, 4 plants (Nicotiana glauca, Tephrosia apollinea, Combretum hartmannianum and Tamarix nilotica) exhibited remarkable anti-angiogenic activity by inhibiting the sprouting of microvessels more than 60%. However, the most potent antiangiogenic effect was recorded by ethanol extract of T. apollinea (94.62%). In addition, the plants exhibited significant antiproliferative effects against human breast (MCF-7) and colon (HCT 116) cancer cells while being non-cytotoxic to the tested normal cells. The IC50 values determined for C. hartmannianum, N. gluaca and T. apollinea against MCF-7 cells were 8.48, 10.78 and 29.36 μg/ml, respectively. Whereas, the IC50 values estimated for N. gluaca, T. apollinea and C. hartmannianum against HCT 116 cells were 5.4, 20.2 and 27.2 μg/ml, respectively. These results were more or less equal to the standard reference drugs, tamoxifen (IC50 = 6.67 μg/ml) and 5-fluorouracil (IC50 = 3.9 μg/ml) tested against MCF-7 and HCT 116, respectively. Extracts of C. hartmannianum bark and N. glauca leaves demonstrated potent antioxidant effect with IC50s range from 9.4-22.4 and 13.4-30 μg/ml, respectively. Extracts of N. glauca leaves and T apollinea aerial parts demonstrated high amount of flavonoids range from 57.6-88.1 and 10.7-78 mg quercetin equivalent/g, respectively.

    CONCLUSIONS: These results are in good agreement with the ethnobotanical uses of the plants (N. glauca, T. apollinea, C. hartmannianum and T. nilotica) to cure the oxidative stress and paraneoplastic symptoms caused by the cancer. These findings endorse further investigations on these plants to determine the active principles and their mode of action.

    Matched MeSH terms: Plants, Medicinal/chemistry*
  6. Sim DS, Chong KW, Nge CE, Low YY, Sim KS, Kam TS
    J Nat Prod, 2014 Nov 26;77(11):2504-12.
    PMID: 25333996 DOI: 10.1021/np500589u
    Seven new indole alkaloids (1-7) comprising four vobasine, two tacaman, and one corynanthe-tryptamine bisindole alkaloid were isolated from the stem-bark extract of a Malayan Tabernaemontana. Two of the new vobasine alkaloids (1, 3), as well as 16-epivobasine (15) and 16-epivobasenal (17), showed appreciable cytotoxicity toward KB cells (IC50 ca. 5 μg/mL). The structure of the known Tabernaemontana alkaloid tronoharine (8) was revised based on newly acquired NMR data, as well as X-ray diffraction analysis.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  7. Daud SB, Ee GC, Malek EA, Teh SS, See I
    Nat Prod Res, 2014;28(19):1534-8.
    PMID: 24897077 DOI: 10.1080/14786419.2014.924001
    A new coumarin, hoseimarin (1), together with four other xanthones, trapezifolizanthone (2), osajaxanthone (3), β-mangostin (4) and caloxanthone A (5), were isolated from the stem bark of Calophyllum hosei. The structures of these compounds were established by using spectroscopic analysis which included (1)H NMR, (13)C NMR, COSY, DEPT, HMQC and HMBC experiments.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  8. Valdiani A, Talei D, Tan SG, Abdul Kadir M, Maziah M, Rafii MY, et al.
    PLoS One, 2014;9(2):e87034.
    PMID: 24586262 DOI: 10.1371/journal.pone.0087034
    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA ) for all the andrographolides.
    Matched MeSH terms: Plants, Medicinal/genetics
  9. Muhammad A, Sirat HM
    Nat Prod Commun, 2013 Oct;8(10):1435-7.
    PMID: 24354195
    The stem bark extracts of Bauhinia rufescens Lam. (Fabaceae) yielded 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, alpha-amyrin acetate, beta-sitosterol 3-O-beta-D-xylopyranoside, 4-(2'-Hydroxyphenethyl)-5-methoxy-2-methylphenol, menisdaurin and sequoyitol. Their structures were determined using spectroscopic methods and comparisons with the literature data. For the antimicrobial assay Gram-positive and Gram-negative bacterial and fungal strains were tested, while the tyrosinase inhibition assay utilized L-DOPA as a substrate for the tyrosinase enzyme. 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, a-amyrin acetate, beta-sitosterol 3-O-D-xylopyranoside, menisdaurin and sequoyitol showed weak to moderate activities with minimum inhibition concentration (MIC) values in the range of 112.5-900 microg/mL against all bacterial strains, while the MIC values for the fungal strains were in the range of 28.1-450 microg/mL. In the tyrosinase inhibition assay, a-amyrin acetate was found to be moderately active against tyrosinase with an inhibition of 62% at 0.1 mg/mL. This activity was lower than that of the positive control, kojic acid (85%).
    Matched MeSH terms: Plants, Medicinal/chemistry
  10. Abdul Jalil MA, Shuid AN, Muhammad N
    Curr Drug Targets, 2013 Dec;14(14):1651-8.
    PMID: 24354586
    With improvements in living standards and healthcare, life expectancy has been increasing dramatically in most parts of the world. These situations lead to the increase in the reported cases of geriatrics-related diseases such as hypogonadal osteoporosis with skeletal fracture being the ultimate outcome, which eventually causes significant morbidity and mortality. The deficient gonadal hormones, which are the main cause of hypogonadal osteoporosis, could be substituted with hormone replacement therapy to hinder bone loss. However, the artificial hormonal therapy has been linked to grievous conditions such as breast and prostate cancers. In view of the various adverse effects associated with conventional treatment, many researchers are now focusing on finding alternative remedies from nature. This article explores the possibilities of certain medicinal plants native to Malaysia that possess androgenic and antioxidant properties to potentially be used in the treatment of fracture due to osteoporosis in ageing people.
    Matched MeSH terms: Plants, Medicinal*
  11. Ado MA, Abas F, Mohammed AS, Ghazali HM
    Molecules, 2013;18(12):14651-69.
    PMID: 24287996 DOI: 10.3390/molecules181214651
    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL) activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents). Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4%) exhibited moderate inhibition (41%-80%) and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack) I.C Nielsen L. (jering), Cynometra cauliflora (nam-nam) and Aleurites moluccana (L.) Willd (candle nut/buah keras) had the highest (100%) anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis), activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  12. Moghadamtousi SZ, Goh BH, Chan CK, Shabab T, Kadir HA
    Molecules, 2013 Aug 30;18(9):10465-83.
    PMID: 23999722 DOI: 10.3390/molecules180910465
    Swietenia macrophylla King (Meliaceae) is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.
    Matched MeSH terms: Plants, Medicinal/chemistry
  13. Sarmin NIM, Tan GYA, Franco CMM, Edrada-Ebel R, Latip J, Zin NM
    Int J Syst Evol Microbiol, 2013 Oct;63(Pt 10):3733-3738.
    PMID: 23645019 DOI: 10.1099/ijs.0.047878-0
    A spore-forming streptomycete designated strain SUK12(T) was isolated from a Malaysian ethnomedicinal plant. Its taxonomic position, established using a polyphasic approach, indicates that it is a novel species of the genus Streptomyces. Morphological and chemical characteristics of the strain were consistent with those of members of the genus Streptomyces. Analysis of the almost complete 16S rRNA gene sequence placed strain SUK12(T) in the genus Streptomyces where it formed a distinct phyletic line with recognized species of this genus. The strain exhibited highest sequence similarity to Streptomyces corchorusii DSM 40340(T) (98.2 %) followed by Streptomyces chrestomyceticus NRRL B-3310(T) (98.1 %). The G+C content of the genomic DNA was 74 mol%. Chemotaxonomic data [MK-9(H8) as the major menaquinone; LL-diaminopimelic acid as a component of cell-wall peptidoglycan; C12 : 0, C14 : 0, C15 : 0 and C17 : 1 as the major fatty acids; phospholipid type II] supported the affiliation of strain SUK12(T) to the genus Streptomyces. The results of the phylogenetic analysis and phenotypic data derived from this and previous studies allowed the genotypic and phenotypic differentiation of strain SUK12(T) from the related species of the genus Streptomyces. The DNA-DNA relatedness value between strain SUK12(T) and S. corchorusii DSM 40340(T) is 18.85±4.55 %. Strain SUK12(T) produces phenazine-1-carboxylic acid, known as tubermycin B, an antibacterial agent. It is proposed, therefore, that strain SUK12(T) ( = DSM 42048(T) = NRRL B-24860(T)) be classified in the genus Streptomyces as the type strain of Streptomyces kebangsaanensis sp. nov.
    Matched MeSH terms: Plants, Medicinal/microbiology*
  14. Mahdi-Pour B, Jothy SL, Latha LY, Chen Y, Sasidharan S
    Asian Pac J Trop Biomed, 2012 Dec;2(12):960-5.
    PMID: 23593576 DOI: 10.1016/S2221-1691(13)60007-6
    To investigate the antioxidant activity of methanolic extracts of Lantana camara (L. camara) various parts and the determination of their total phenolics content.
    Matched MeSH terms: Plants, Medicinal/chemistry
  15. Tang LI, Ling AP, Koh RY, Chye SM, Voon KG
    PMID: 22244370 DOI: 10.1186/1472-6882-12-3
    Dengue fever regardless of its serotypes has been the most prevalent arthropod-borne viral diseases among the world population. The development of a dengue vaccine is complicated by the antibody-dependent enhancement effect. Thus, the development of a plant-based antiviral preparation promises a more potential alternative in combating dengue disease.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  16. Mohan S, Abdul AB, Abdelwahab SI, Al-Zubairi AS, Aspollah Sukari M, Abdullah R, et al.
    Leuk. Res., 2010 Nov;34(11):1483-92.
    PMID: 20569984 DOI: 10.1016/j.leukres.2010.04.023
    Typhonium flagelliforme (TF) is a tropical plant, traditionally used by the ethnic population of Malaysia for the cure of various cancers. This plant had shown to induce antiproliferative effect as well as apoptosis in cancer cells. However, there is no available information to address that TF affects murine leukemia cells in vitro and in vivo. Here, we investigated in vitro and in vivo effects of TF on murine leukemia WEHI-3 cells. It was found that the growth of leukemia cells in vitro was inhibited by the various extracts of TF. Among these fractions, the dichloromethane (DCM) tuber extracts of TF showed the lowest IC(50) (24.0 ± 5.2 μg/ml) and had demonstrated apoptogenic effect when observed under fluorescent microscope. We investigated the in vivo effects of DCM tuber extracts of TF on murine leukemia cells, and the results showed that the counts of immature granulocytes and monocytes were significantly decreased in peripheral blood of BALB/c leukemia mice after the oral administration of DCM tuber extracts of TF for 28 days with three doses (200, 400 and 800 mg/kg). These results were confirmed by observing the spleen histopathology and morphology of enlarged spleen and liver in leukemia mice when compared with the control. Furthermore, the cell death mechanism in the spleen tissue of treated mice was found via apoptosis.
    Matched MeSH terms: Plants, Medicinal*
  17. Mohamed EA, Lim CP, Ebrika OS, Asmawi MZ, Sadikun A, Yam MF
    J Ethnopharmacol, 2011 Jan 27;133(2):358-63.
    PMID: 20937371 DOI: 10.1016/j.jep.2010.10.008
    The present investigation was carried out to evaluate the safety of standardised 50% ethanol extract of Orthosiphon stamineus plant by determining its potential toxicity after acute and subchronic administration in rats.
    Matched MeSH terms: Plants, Medicinal/toxicity
  18. Gan CY, Robinson WT, Etoh T, Hayashi M, Komiyama K, Kam TS
    Org. Lett., 2009 Sep 3;11(17):3962-5.
    PMID: 19708704 DOI: 10.1021/ol9016172
    A cytotoxic bisindole alkaloid possessing an unprecedented structure constituted from the union of an eburnan half and a novel vinylquinoline alkaloid has been isolated from Leuconotis griffithii. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway to the novel quinolinic coupling partner is presented from an Aspidosperma precursor.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  19. Lim SH, Mahmood K, Komiyama K, Kam TS
    J Nat Prod, 2008 Jun;71(6):1104-6.
    PMID: 18462006 DOI: 10.1021/np800123g
    A new cycloartane, monocarpinine (1), incorporating a fused tetrahydrofuranyl ring, and a cytotoxic tetracyclic lactam, monomarginine (2), were isolated from a stem bark extract of the Malayan species Monocarpia marginalis. The structures of these compounds were determined using NMR and MS analysis. Monomarginine (2) showed appreciable cytotoxicity toward human KB (both drug-sensitive and drug-resistant) and Jurkat cells.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  20. Meragelman TL, Scudiero DA, Davis RE, Staudt LM, McCloud TG, Cardellina JH, et al.
    J Nat Prod, 2009 Mar 27;72(3):336-9.
    PMID: 19093800 DOI: 10.1021/np800350x
    The nuclear factor-kappaB (NF-kappaB) signaling pathway is constitutively active in many types of cancers and is a potential therapeutic target. Using a cell-based assay for stability of inhibitor of kappa B (IkappaB), a critical regulator of NF-kappaB activity, we found that an organic solvent extract of the plant Cryptocarya rugulosa inhibited constitutive NF-kappaB activity in human lymphoma cell lines. The active components were identified as rugulactone, a new alpha-pyrone (1), and the known cryptocaryone (2). Rugulactone was the more active compound, exhibiting up to 5-fold induction of IkappaB at 25 microg/mL; maximal activity was observed with 10 h exposure of test cells to 1 or 2.
    Matched MeSH terms: Plants, Medicinal/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links