Displaying publications 21 - 40 of 294 in total

Abstract:
Sort:
  1. Lim HM, Teo CH, Ng CJ, Chiew TK, Ng WL, Abdullah A, et al.
    JMIR Med Inform, 2021 Feb 26;9(2):e23427.
    PMID: 33600345 DOI: 10.2196/23427
    BACKGROUND: During the COVID-19 pandemic, there was an urgent need to develop an automated COVID-19 symptom monitoring system to reduce the burden on the health care system and to provide better self-monitoring at home.

    OBJECTIVE: This paper aimed to describe the development process of the COVID-19 Symptom Monitoring System (CoSMoS), which consists of a self-monitoring, algorithm-based Telegram bot and a teleconsultation system. We describe all the essential steps from the clinical perspective and our technical approach in designing, developing, and integrating the system into clinical practice during the COVID-19 pandemic as well as lessons learned from this development process.

    METHODS: CoSMoS was developed in three phases: (1) requirement formation to identify clinical problems and to draft the clinical algorithm, (2) development testing iteration using the agile software development method, and (3) integration into clinical practice to design an effective clinical workflow using repeated simulations and role-playing.

    RESULTS: We completed the development of CoSMoS in 19 days. In Phase 1 (ie, requirement formation), we identified three main functions: a daily automated reminder system for patients to self-check their symptoms, a safe patient risk assessment to guide patients in clinical decision making, and an active telemonitoring system with real-time phone consultations. The system architecture of CoSMoS involved five components: Telegram instant messaging, a clinician dashboard, system administration (ie, back end), a database, and development and operations infrastructure. The integration of CoSMoS into clinical practice involved the consideration of COVID-19 infectivity and patient safety.

    CONCLUSIONS: This study demonstrated that developing a COVID-19 symptom monitoring system within a short time during a pandemic is feasible using the agile development method. Time factors and communication between the technical and clinical teams were the main challenges in the development process. The development process and lessons learned from this study can guide the future development of digital monitoring systems during the next pandemic, especially in developing countries.

  2. Tuang GJ, Mansor M, Abdullah A
    Indian J Otolaryngol Head Neck Surg, 2022 Dec;74(Suppl 3):3671-3674.
    PMID: 36742599 DOI: 10.1007/s12070-020-02316-8
    Microtia comprises a spectrum of congenital malformation characterized by partial deformities of the auricular components to complete absence of pinna. Surgical reconstructions of this anomaly are often complex and technically challenging. Infection, hematoma, and skin necrosis with resultant exposed cartilage graft tend to occur in the early phase of post-operative care. Herein, we report a case of a spontaneous auricular abscess with exposed cartilage framework 20 years following rib cartilage reconstruction. To our knowledge, this is the first case of such an occurrence. The treatment options are discussed, along with the review of the literature.
  3. Mohamad MS, Omatu S, Deris S, Yoshioka M, Abdullah A, Ibrahim Z
    Algorithms Mol Biol, 2013;8(1):15.
    PMID: 23617960 DOI: 10.1186/1748-7188-8-15
    Gene expression data could likely be a momentous help in the progress of proficient cancer diagnoses and classification platforms. Lately, many researchers analyze gene expression data using diverse computational intelligence methods, for selecting a small subset of informative genes from the data for cancer classification. Many computational methods face difficulties in selecting small subsets due to the small number of samples compared to the huge number of genes (high-dimension), irrelevant genes, and noisy genes.
  4. Abdullah A, Deris S, Anwar S, Arjunan SN
    PLoS One, 2013;8(3):e56310.
    PMID: 23469172 DOI: 10.1371/journal.pone.0056310
    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
  5. Naderipour A, Abdullah A, Marzbali MH, Arabi Nowdeh S
    Expert Syst Appl, 2022 Jan;187:115914.
    PMID: 34566274 DOI: 10.1016/j.eswa.2021.115914
    Reconfiguration of the distribution network to determine its optimal configuration is a technical and low-cost method that can improve different characteristics of the network based on multi-criteria optimization. In this paper reconfiguration of unbalanced distribution networks is presented with the objective of power loss minimization, voltage unbalance minimization, voltage sag improvement, and minimizing energy not supplied by the customers based on fuzzy multi-criteria approach (FMCA) using new improved corona-virus herd immunity optimizer algorithm (ICHIOA). The voltage unbalances and voltage sag is power quality criteria and also the ENS refers to the reliability index. Conventional CHIOA is inspired based on herd immunity against COVID-19 disease via social distancing and is improved using nonlinearly decreasing inertia weight strategy for global and local exploration improvement. The methodology is implemented as single and multi-objective optimization on 33 and 69 bus IEEE standard networks. Moreover, the performance of the ICHIOA in problem-solving is compared with some well-known algorithms such as particle swarm optimization (PSO), grey wolf optimizer (GWO), moth flame optimizer (MFO), ant lion optimizer (ALO), bat algorithm (BA) and also conventional CHIOA. The simulation results based on the FMCA showed that all criteria are improved with reconfiguration due to compromising between them while in single-objective optimization, some criteria may be weakened. Also, the obtained results confirmed the superiority of the ICHIOA in comparison with the other algorithms in achieving better criteria with lower convergence tolerance and more convergence accuracy. Moreover, the results cleared that the ICHIOA based on FMCA is capable to determine the best network configuration optimally to improve the power loss, voltage sag, voltage unbalance, and ENS in different loading conditions.
  6. Misman MF, Mohamad MS, Deris S, Abdullah A, Hashim SZ
    Bioinformation, 2011;7(4):169-75.
    PMID: 22102773
    Pathway analysis has lead to a new era in genomic research by providing further biological process information compared to traditional single gene analysis. Beside the advantage, pathway analysis provides some challenges to the researchers, one of which is the quality of pathway data itself. The pathway data usually defined from biological context free, when it comes to a specific biological context (e.g. lung cancer disease), typically only several genes within pathways are responsible for the corresponding cellular process. It also can be that some pathways may be included with uninformative genes or perhaps informative genes were excluded. Moreover, many algorithms in pathway analysis neglect these limitations by treating all the genes within pathways as significant. In previous study, a hybrid of support vector machines and smoothly clipped absolute deviation with groups-specific tuning parameters (gSVM-SCAD) was proposed in order to identify and select the informative genes before the pathway evaluation process. However, gSVM-SCAD had showed a limitation in terms of the performance of classification accuracy. In order to deal with this limitation, we made an enhancement to the tuning parameter method for gSVM-SCAD by applying the B-Type generalized approximate cross validation (BGACV). Experimental analyses using one simulated data and two gene expression data have shown that the proposed method obtains significant results in identifying biologically significant genes and pathways, and in classification accuracy.
  7. Mandala S, Rizal A, Adiwijaya, Nurmaini S, Suci Amini S, Almayda Sudarisman G, et al.
    PLoS One, 2024;19(4):e0297551.
    PMID: 38593145 DOI: 10.1371/journal.pone.0297551
    Arrhythmia is a life-threatening cardiac condition characterized by irregular heart rhythm. Early and accurate detection is crucial for effective treatment. However, single-lead electrocardiogram (ECG) methods have limited sensitivity and specificity. This study propose an improved ensemble learning approach for arrhythmia detection using multi-lead ECG data. Proposed method, based on a boosting algorithm, namely Fine Tuned Boosting (FTBO) model detects multiple arrhythmia classes. For the feature extraction, introduce a new technique that utilizes a sliding window with a window size of 5 R-peaks. This study compared it with other models, including bagging and stacking, and assessed the impact of parameter tuning. Rigorous experiments on the MIT-BIH arrhythmia database focused on Premature Ventricular Contraction (PVC), Atrial Premature Contraction (PAC), and Atrial Fibrillation (AF) have been performed. The results showed that the proposed method achieved high sensitivity, specificity, and accuracy for all three classes of arrhythmia. It accurately detected Atrial Fibrillation (AF) with 100% sensitivity and specificity. For Premature Ventricular Contraction (PVC) detection, it achieved 99% sensitivity and specificity in both leads. Similarly, for Atrial Premature Contraction (PAC) detection, proposed method achieved almost 96% sensitivity and specificity in both leads. The proposed method shows great potential for early arrhythmia detection using multi-lead ECG data.
  8. Abdullah A, Deris S, Mohamad MS, Anwar S
    PLoS One, 2013;8(4):e61258.
    PMID: 23593445 DOI: 10.1371/journal.pone.0061258
    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
  9. Azuan NH, Khairunniza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D
    Plant Dis, 2019 Dec;103(12):3218-3225.
    PMID: 31596688 DOI: 10.1094/PDIS-10-18-1721-RE
    Basal stem rot (BSR), caused by the Ganoderma fungus, is an infectious disease that affects oil palm (Elaeis guineensis) plantations. BSR leads to a significant economic loss and reductions in yields of up to Malaysian Ringgit (RM) 1.5 billion (US$400 million) yearly. By 2020, the disease may affect ∼1.7 million tonnes of fresh fruit bunches. The plants appear symptomless in the early stages of infection, although most plants die after they are infected. Thus, early, accurate, and nondestructive disease detection is crucial to control the impact of the disease on yields. Terrestrial laser scanning (TLS) is an active remote-sensing, noncontact, cost-effective, precise, and user-friendly method. Through high-resolution scanning of a tree's dimension and morphology, TLS offers an accurate indicator for health and development. This study proposes an efficient image processing technique using point clouds obtained from TLS ground input data. A total of 40 samples (10 samples for each severity level) of oil palm trees were collected from 9-year-old trees using a ground-based laser scanner. Each tree was scanned four times at a distance of 1.5 m. The recorded laser scans were synched and merged to create a cluster of point clouds. An overhead two-dimensional image of the oil palm tree canopy was used to analyze three canopy architectures in terms of the number of pixels inside the crown (crown pixel), the degree of angle between fronds (frond angle), and the number of fronds (frond number). The results show that the crown pixel, frond angle, and frond number are significantly related and that the BSR severity levels are highly correlated (R2 = 0.76, P < 0.0001; R2 = 0.96, P < 0.0001; and R2 = 0.97, P < 0.0001, respectively). Analysis of variance followed post hoc tests by Student-Newman-Keuls (Newman-Keuls) and Dunnett for frond number presented the best results and showed that all levels were significantly different at a 5% significance level. Therefore, the earliest stage that a Ganoderma infection could be detected was mildly infected (T1). For frond angle, all post hoc tests showed consistent results, and all levels were significantly separated except for T0 and T1. By using the crown pixel parameter, healthy trees (T0) were separated from unhealthy trees (moderate infection [T2] and severe infection [T3]), although there was still some overlap with T1. Thus, Ganoderma infection could be detected as early as the T2 level by using the crown pixel and the frond angle parameters. It is hard to differentiate between T0 and T1, because during mild infection, the symptoms are highly similar. Meanwhile, T2 and T3 were placed in the same group, because they showed the same trend. This study demonstrates that the TLS is useful for detecting low-level infection as early as T1 (mild severity). TLS proved beneficial in managing oil palm plantation disease.
  10. Arulselvan P, Tan WS, Gothai S, Muniandy K, Fakurazi S, Esa NM, et al.
    Molecules, 2016 Oct 31;21(11).
    PMID: 27809259
    In the present investigation, we prepared four different solvent fractions (chloroform, hexane, butanol, and ethyl acetate) of Moringa oleifera extract to evaluate its anti-inflammatory potential and cellular mechanism of action in lipopolysaccharide (LPS)-induced RAW264.7 cells. Cell cytotoxicity assay suggested that the solvent fractions were not cytotoxic to macrophages at concentrations up to 200 µg/mL. The ethyl acetate fraction suppressed LPS-induced production of nitric oxide and proinflammatory cytokines in macrophages in a concentration-dependent manner and was more effective than the other fractions. Immunoblot observations revealed that the ethyl acetate fraction effectively inhibited the expression of inflammatory mediators including cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor (NF)-κB p65 through suppression of the NF-κB signaling pathway. Furthermore, it upregulated the expression of the inhibitor of κB (IκBα) and blocked the nuclear translocation of NF-κB. These findings indicated that the ethyl acetate fraction of M. oleifera exhibited potent anti-inflammatory activity in LPS-stimulated macrophages via suppression of the NF-κB signaling pathway.
  11. Abdullah A, Mohd Murshid N, Makpol S
    Mol Neurobiol, 2020 Dec;57(12):5193-5207.
    PMID: 32865663 DOI: 10.1007/s12035-020-02083-1
    In the human body, cell division and metabolism are expected to transpire uneventfully for approximately 25 years. Then, secondary metabolism and cell damage products accumulate, and ageing phenotypes are acquired, causing the progression of disease. Among these age-related diseases, neurodegenerative diseases have attracted considerable attention because of their irreversibility, the absence of effective treatment and their relationship with social and economic pressures. Mechanistic (formerly mammalian) target of rapamycin (mTOR), sirtuin (SIRT) and insulin/insulin growth factor 1 (IGF1) signalling pathways are among the most important pathways in ageing-associated conditions, such as neurodegeneration. These longevity-related pathways are associated with a diversity of various processes, including metabolism, cognition, stress reaction and brain plasticity. In this review, we discuss the roles of sirtuin and mTOR in ageing and neurodegeneration, with an emphasis on their regulation of autophagy, apoptosis and mitochondrial energy metabolism. The intervention of neurodegeneration using potential antioxidants, including vitamins, phytochemicals, resveratrol, herbals, curcumin, coenzyme Q10 and minerals, specifically aimed at retaining mitochondrial function in the treatment of Alzheimer's disease, Parkinson's disease and Huntington's disease is highlighted.
  12. Farah Diyana, A., Abdullah, A., Shahrul Hisham, Z.A., Chan, K. M.
    MyJurnal
    Antioxidants in seaweeds have attracted increasing interest for its role in protecting human health. Therefore, the aim of this study was to assess the Total phenolic content (TPC) values and antioxidant activities in red seaweeds Kappaphycus alvarezii and Kappaphycus striatum of different solvent extracts. Total phenolic content (TPC) and antioxidant activities (DPPH scavenging assay and Trolox equivalent antioxidant capacity assay, TEAC) for both K. alvarezii and K. striatum extracts were determined using different solvents at different concentrations (ethanol: 50%, 70%, 100%; acetone: 50%, 70%, 100%; methanol: 50%, 70%, 100%). The TPC value was measured using the Folin-Ciocalteu’s method. The antioxidant activities were measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and Trolox Equivalent Antioxidant Capacity (TEAC) assay. The highest TPC value of K. alvarezii antioxidant extract was obtained by 50% ethanol extracts while for K. striatum obtained by 50% methanol extract. The highest percentage of DPPH free radical inhibition for K. alvarezii was shown by 50% acetone extract while K. striatum was shown using 50% methanol extract. The highest TEAC value for K. alvarezii was shown by 50% acetone while K. striatum extract was shown by 50% ethanol extract. The TPC values and antioxidant activities of all solvent extracts of K. striatum were significantly higher (p< 0.05) than K. alvarezii antioxidant extracts. The TPC values showed strong correlation (r = 0.797) with TEAC values for K. alvarezii antioxidant extract (p< 0.01). The TEAC values also showed strong correlation (r = 0.735) with percentage of DPPH free radical inhibition for K. alvarezii (p< 0.01). The TPC value, DPPH free radical scavenging assay and TEAC assay for K. striatum extracts showed strong correlation (r> 0.8) with each other (p< 0.01). In summary, K. striatum showed better antioxidant activity and higher TPC value than K. alvarezii.
  13. Mala-Maung, Abdullah A, Abas ZW
    Med J Malaysia, 2011 Dec;66(5):435-9.
    PMID: 22390096 MyJurnal
    This cross-sectional study determined the appreciation of the learning environment and development of higher-order learning skills among students attending the Medical Curriculum at the International Medical University, Malaysia which provides traditional and e-learning resources with an emphasis on problem based learning (PBL) and self-directed learning. Of the 708 participants, the majority preferred traditional to e-resources. Students who highly appreciated PBL demonstrated a higher appreciation of e-resources. Appreciation of PBL is positively and significantly correlated with higher-order learning skills, reflecting the inculcation of self-directed learning traits. Implementers must be sensitive to the progress of learners adapting to the higher education environment and innovations, and to address limitations as relevant.
  14. Muchlisin ZA, Batubara AS, Fadli N, Muhammadar AA, Utami AI, Farhana N, et al.
    F1000Res, 2017;6:258.
    PMID: 28529702 DOI: 10.12688/f1000research.10715.1
    The objective of the present study was to evaluate the species diversity of eels native to Aceh waters based on genetic data. Sampling was conducted in western coast waters of Aceh Province, Indonesia, from July to August 2016. Genomic DNA was extracted from the samples, a genomic region from the 5' region of the cox1 gene was amplified and sequenced, and this was then used to analyse genetic variation. The genetic sequences were blasted into the NCBI database. Based on this analysis there were three valid species of eels that occurred in Aceh waters, namely Anguilla marmorata, A. bicolor bicolor, and A. bengalensis bengalensis.
  15. Dhabali AA, Awang R, Hamdan Z, Zyoud SH
    Int J Clin Pharmacol Ther, 2012 Dec;50(12):851-61.
    PMID: 23006441 DOI: 10.5414/CP201689
    OBJECTIVES: The objectives of this study were 1) to obtain information regarding the prescribing pattern of nonsteroidal anti-inflammatory drugs (NSAIDs) in the primary care setting at a Malaysian university, 2) to determine the prevalence and types of potential NSAID prescription related problems (PRPs), and 3) to identify patient characteristics associated with exposure to these potential PRPs.
    METHODS: We retrospectively collected data from 1 academic year using the electronic medical records of patients in the University Sains Malaysia (USM) primary care system. The defined daily dose (DDD) methodology and the anatomical therapeutic chemical (ATC) drug classification system were used in the analysis and comparison of the data. Statements representing potential NSAID PRPs were developed from authoritative drug information sources. Then, algorithms were developed to screen the databases for these potential PRPs. Descriptive and comparative statistics were used to characterize DRPs.
    RESULTS: During the study period, 12,470 NSAID prescriptions were prescribed for 6,509 patients (mean ± SD = 1.92 ± 1.83). This represented a prevalence of 35,944 per 100,000 patients, or 36%. Based on their DDDs, mefenamic acid and diclofenac were the most prescribed NSAIDs. 573 potential NSAID-related PRPs were observed in a cohort of 432 patients, representing a prevalence of 6,640 per 100,000 NSAIDs users, or 6.6% of all NSAID users. Multivariate logistic regression analysis revealed that patients with a Malay ethnic background (p < 0.001), members of the staff (p < 0.001), having 4 or more prescribers (p < 0.001) or having 2 - 3 prescribers (p = 0.02), and representing 4 or more long-term therapeutic groups (LTTGs) (p < 0.001) or 2 - 3 LTTGs (p < 0.001) were significantly associated with an increased chance of exposure to potential NSAID related PRPs.
    CONCLUSIONS: This is the first study in Malaysia that presents data on the prescribing pattern of NSAIDs and the characteristics of potential NSAID-related PRPs. The prevalence of potential NSAID-related PRPs is frequent in the primary care setting. Exposure to these PRPs is associated with specific sociodemographic and health status factors. These results should help to raise the awareness of clinicians and patients about serious NSAID PRPs.

    Study site: University Sains Malaysia (USM) primary care system.
  16. Othman IA, Abdullah A, See GB, Umat C, Tyler RS
    J Int Adv Otol, 2020 Dec;16(3):297-302.
    PMID: 33136006 DOI: 10.5152/iao.2020.8563
    OBJECTIVES: This study aimed to report the auditory performance in children with cochleovestibular malformation (CVM)/cochlear nerve deficiency (CND) who were implanted early at the Universiti Kebangsaan Malaysia Medical Centre, using Categorical Auditory Performance (CAP)-II score and Speech Intelligibility Rating (SIR) scales, and to compare the outcome of their matched counterparts.

    MATERIALS AND METHODS: A total of 14 children with CVM/CND with unilateral cochlear implant (CI) implanted before the age of 4 years old were matched and compared with 14 children with normal inner ear structures. Their improvement in auditory performance was evaluated twice using CAP-II score and SIR scales at 6-month intervals, with the baseline evaluation done at least 6 months after implantation.

    RESULTS: The average age of implantation was 31±8 and 33±7 months for the control group and the case (CVM/CND) group, respectively. Overall, there were no significant differences in outcome when comparing the entire cohort of case subjects and their matched control subjects in this study. However, the improvement in CAP-II scores and SIR scales among the case subjects in between the first and second evaluations was statistically significant (p=0.040 and p=0.034, respectively). With longer duration of CI usage, children with CVM/CND showed significant speech perception outcome evident by their SIR scales (p=0.011).

    CONCLUSION: Children with radiographically malformed inner ear structures who were implanted before the age of 4 years have comparable performance to their matched counterparts, evident by their similar improvement of CAP-II scores and SIR scales over time. Hence, this group of children benefited from cochlear implantation.

  17. Mahmud KA, Nasseri Z, Mohamed Mukari SA, Ismail F, Abdullah A
    Cureus, 2021 Mar 01;13(3):e13629.
    PMID: 33816028 DOI: 10.7759/cureus.13629
    Temporal bone carcinoma is a rare malignant tumor of the head and neck region. Its clinical presentations can mimic benign ear diseases, leading to inaccurate diagnosis and substandard management. We present the case of a 53-year-old female with a three-month history of progressive right otalgia, otorrhea, and hearing loss. Otoscopic examination revealed a mass occupying the right external auditory canal. However, the lesion was presumed to be an aural polyp by several clinicians previously. Multiple courses of oral antibiotics had been prescribed before she was referred to our clinic for the non-resolving aural polyp. Imaging studies showed an external auditory canal soft tissue mass with extradural and parotid extension. The mass was biopsied, and the result was reported as squamous cell carcinoma of the temporal bone. The patient was advised for a total temporal bone resection and parotidectomy; however, she declined the surgical intervention. Within a month, the tumor had metastasized to her lung, liver, and vertebral bodies. She was referred to the Oncology team for palliative chemo-radiotherapy. Temporal bone malignancy must be considered as a differential diagnosis in a middle-aged or elderly patient with a non-resolving aural polyp without a chronic discharging ear. Imaging studies and histopathological evaluation should be prompted to ascertain the diagnosis. Repeated course of oral antibiotic will delay treatment and subsequently may lead to poor prognosis.
  18. Gharamah AA, Moharram AM, Ismail MA, Al-Hussaini AK
    Indian J Ophthalmol, 2014 Feb;62(2):196-203.
    PMID: 24008795 DOI: 10.4103/0301-4738.116463
    This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents.
  19. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
  20. Ghosh S, Mondol S, Lahiri D, Nag M, Sarkar T, Pati S, et al.
    Front Chem, 2023;11:1118454.
    PMID: 36959877 DOI: 10.3389/fchem.2023.1118454
    Medicinal plants are long known for their therapeutic applications. Tinospora cordifolia (commonly called gulancha or heart-leaved moonseed plant), a herbaceous creeper widely has been found to have antimicrobial, anti-inflammatory, anti-diabetic, and anti-cancer properties. However, there remains a dearth of reports regarding its antibiofilm activities. In the present study, the anti-biofilm activities of phytoextractof T. cordifolia and the silver nanoparticles made from this phytoextract were tested against the biofilm of S.taphylococcus aureus, one of the major nosocomial infection-producing bacteria taking tetracycline antibiotic as control. Both phytoextract from the leaves of T. cordifolia, and the biogenic AgNPs from the leaf extract of T. cordifolia, were found successful in reducing the biofilm of Staphylococcus aureus. The biogenic AgNPs formed were characterized by UV- Vis spectroscopy, Field emission Scanning Electron Microscopy (FE- SEM), and Dynamic light scattering (DLS) technique. FE- SEM images showed that the AgNPs were of size ranging between 30 and 50 nm and were stable in nature, as depicted by the zeta potential analyzer. MIC values for phytoextract and AgNPs were found to be 180 mg/mL and 150 μg/mL against S. aureusrespectively. The antibiofilm properties of the AgNPs and phytoextract were analyzed using the CV assay and MTT assay for determining the reduction of biofilms. Reduction in viability count and revival of the S. aureus ATCC 23235 biofilm cells were analyzed followed by the enfeeblement of the EPS matrix to quantify the reduction in the contents of carbohydrates, proteins and eDNA. The SEM analyses clearly indicated that although the phytoextracts could destroy the biofilm network of S. aureuscells yet the biogenicallysynthesizedAgNPs were more effective in biofilm disruption. Fourier Transformed Infrared Radiations (FT- IR) analyses revealed that the AgNPs could bring about more exopolysaccharide (EPS) destruction in comparison to the phytoextract. The antibiofilm activities of AgNPs made from the phytoextract were found to be much more effective than the non-conjugated phytoextract, indicating the future prospect of using such particles for combatting biofilm-mediated infections caused by S aureus.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links