Unpredictable natural disasters, disease outbreaks, climate change, pollution, and war constantly threaten food crop production. Smart and precision farming encourages using information or data obtained by using advanced technology (sensors, AI, and IoT) to improve decision-making in agriculture and achieve high productivity. For instance, weather prediction, nutrient information, pollutant assessment, and pathogen determination can be made with the help of new analytical and bioanalytical methods, demonstrating the potential for societal impact such as environmental, agricultural, and food science. As a rising technology, biosensors can be a potential tool to promote smart and precision farming in developing and underdeveloped countries. This review emphasizes the role of on-field, in vivo, and wearable biosensors in smart and precision farming, especially those biosensing systems that have proven with suitably complex and analytically challenging samples. The development of various agricultural biosensors in the past five years that fulfill market requirements such as portability, low cost, long-term stability, user-friendliness, rapidity, and on-site monitoring will be reviewed. The challenges and prospects for developing IoT and AI-integrated biosensors to increase crop yield and advance sustainable agriculture will be discussed. Using biosensors in smart and precision farming would ensure food security and revenue for farming communities.
In the present study, an assessment of land suitability potential for agriculture in the study area of IBB governorate, Republic of Yemen has been conducted through close examination of the indicators of land characteristics and qualities. The objective of this study is to evaluate the available land resource and produce the potential map of the study area. Remote sensing data help in mapping land resources, especially in mountainous areas where accessibility is limited. Satellite imagery data used for this study includes data from multi-temporal Landsat TM which dated June 2001. The parameters taken into consideration were 16 thematic maps i.e., slope, DEM, rainfall, soil, land use, land degradation as well as land characteristics maps. Satellite image of the study area has been classified for land use, land degradation and soil maps preparation, while topo sheet and ancillary data have been used for slope and DEM maps and soil properties determination. The land potential of the study area was categorized as very high, high, moderate, low and very low by adopting the logical criteria. These categories were arrived at by integrating the various layers with corresponding weights in a Geographical Information System (GIS). The study demonstrates that the study area can be categorized into spatially distributed agriculture potential zones based on the soil properties, terrain characteristics and analyzing present land use. This approach has the potential as a useful tool for guiding policy decision on sustainable land resource management.
Rice straw residue management is still facing many problems worldwide. This study used two environmentally friendly methods to investigate the effects of rice straw burning activity on water-extracted carbohydrate content in long-term paddy soil. Soil samples were collected at a depth within 0-15 cm at the paddy field before and after burning rice straw (pre-burning and post-burning), then extracted by distilled water at the ratio of 1:10 (soil: water) for measuring hot water (at 80 °C) and water extracted carbohydrate (at 25 °C) (HECH and WECH). The results showed that burning rice straw did not alter soil organic carbon (SOC); however, soil pH increased approximately 8.3%. Meanwhile, WECH and HECH ranged from 233 to 630 mg kg-1, with the highest HECH in Pre-burning treatment, while the lowest amount addressed WECH of Post-burning treatment. Extracted carbohydrate decreased after burning rice straw compared to Pre-burning soil. On the other hand, hot water increased 39-58% of carbohydrates compared to water extraction. We conclude that burning rice straw did not affect SOC but tends to reduce their labile carbon pools, and the heating process likely degrade part of SOC when extracted at high temperatures.
The valorization of shell-based agricultural waste biomass for biofuel production represents a promising approach within the circular bioeconomy. This study employs a bibliometric analysis to investigate research trends and identify key developments in the field from 1997 to 2023, using data from the Web of Science and VOSviewer for scientific mapping. A total of 1333 research articles were examined, revealing notable shifts in research focus: from pyrolysis and biomass energy (1997-2005) to gasification (2006-2014), and more recently, to enzymatic hydrolysis and lignocellulosic biomass gasification (2015-2023). Findings highlight the critical role of pre-treatment processes such as combustion, pyrolysis, and torrefaction in enhancing biofuel yields. The analysis also underscores Asia's leading role in research contributions, with collaborative networks strengthening across various global institutions. Future research is encouraged to explore innovative and cost-effective pre-treatment methods, fostering sustainable, large-scale biofuel production from agricultural waste shells.
Climate change in Asia is affecting farmers' daily routines. Much of the focus surrounding climate change has targeted the economic and environmental repercussions on farming. Few systematic reviews have been carried out on the social impacts of climate change among farmers in Asia. The present article set out to analyse the existing literature on Asian farmers' adaptation practices towards the impacts of climate change. Guided by the PRISMA Statement (Preferred Reporting Items for Systematic reviews and Meta-Analyses) review method, a systematic review of the Scopus and Web of Science databases identified 38 related studies. Further review of these articles resulted in six main themes - crop management, irrigation and water management, farm management, financial management, physical infrastructure management and social activities. These six themes further produced a total of 35 sub-themes. Several recommendations are highlighted related to conducting more qualitative studies, to have specific and a standard systematic review method for guide research synthesis in context of climate change adaptation and to practice complimentary searching techniques such as citation tracking, reference searching, snowballing and contacting experts.
The significance of Science Framework (SF) to date is receiving more acceptances all over the world to address agricultural sustainability. The professional views, however, advocate that the SF known as Mega Science Framework (MSF) in the transitional economies is not converging effectively in many ways for the agricultural sustainability. Specially, MSF in transitional economies is mostly incapable to identify barriers in agricultural research, inadequate to frame policy gaps with the goal of strategizing the desired sustainability in agricultural technology and innovation, inconsistent in finding to identify the inequities, and incompleteness to rebuild decisions. Therefore, this study critically evaluates the components of MSF in transitional economies and appraises the significance, dispute and illegitimate issue to achieve successful sustainable development. A sound and an effective MSF can be developed when there is an inter-linkage within principal components such as of (a) national priorities, (b) specific research on agricultural sustainability, (c) adequate agricultural research and innovation, and (d) alternative policy alteration. This maiden piece of research which is first its kind has been conducted in order to outline the policy direction to have an effective science framework for agricultural sustainability.
A significant portion of the world's population relies on rice as a primary source of nutrition. In Malaysia, rice production began in the early 1960s, which led to the cultivation of the country's most significant food crop up till the present day. Research on various aspects of the price and production of rice has been done by various methods in the past. In this study, we have adopted novel multivariate fuzzy time series models (MFTS) i.e. fuzzy vector autoregressive models (FVAR) alongside conventional vector autoregressive model (VAR) for assessing rice price and production using a dataset from the Malaysian Agricultural Research and Development Institute (MERDI). The proposed method(s) especially with the usage of Trapezoidal Fuzzy Numbers (TrFNs) have commendable accuracy with great future forecasts over the VAR model. The model selection was made by the least MAPE with the corresponding highest Relative Efficiency as criteria. The study fills the gap in applying advanced fuzzy models for rice forecasting, aiming to improve accuracy using fuzzy vector autoregressive (FVAR) models with Triangular Fuzzy Numbers (TFNs) and Trapezoidal Fuzzy Numbers (TrFNs) over traditional VAR models. The study's findings imply that the enhanced forecasting accuracy of FVAR models with Trapezoidal Fuzzy Numbers (TrFNs) can significantly assist local farmers and stakeholders in making informed decisions about production and pricing. This improved forecasting capability is expected to promote business growth within the Malaysian market and facilitate increased rice exports, ultimately contributing to the country's economic prosperity.
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.
Interactions between multispecies are usual incidence in their habitats. Such interactions among the species are thought to be asymmetric in nature, which combine with environmental factors can determine the distributions and abundances of the species. Most often, each species responds differentially to biotic interactions and environmental factors. Therefore, predicting the presence-absence of species is a major challenge in ecology. In this paper, we used mathematical modelling to study the combined effects of biotic interactions (i.e. asymmetric competition) and environmental factors on the presence-absence of the species across a geographical region. To gain better insight on this problem, we performed invasion and numerical simulation analyses of the model of multispecies competitive dynamics. Different threshold values of competition coefficients were observed, which result in different phenomena; such as coexistence of species and priority effects. Consequently, we propose that asymmetric biotic interactions, combined with environmental factors can allow coexistence of relatively weak and strong species at the same location x.
Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications.
Aichi Target 11 committed governments to protect ≥17% of their terrestrial environments by 2020, yet it was rarely achieved, raising questions about the post-2020 Global Biodiversity Framework goal to protect 30% by 2030. Asia is a challenging continent for such targets, combining high biodiversity with dense human populations. Here, we evaluated achievements in Asia against Aichi Target 11. We found that Asia was the most underperforming continent globally, with just 13.2% of terrestrial protected area (PA) coverage, averaging 14.1 ± SE 1.8% per country in 2020. 73.1% of terrestrial ecoregions had <17% representation and only 7% of PAs even had an assessment of management effectiveness. We found that a higher agricultural land in 2015 was associated with lower PA coverage today. Asian countries also showed a remarkably slow average annual pace of 0.4 ± SE 0.1% increase of PA extent. These combined lines of evidence suggest that the ambitious 2030 targets are unlikely to be achieved in Asia unless the PA coverage to increase 2.4-5.9 times faster. We provided three recommendations to support Asian countries to meet their post-2020 biodiversity targets: complete reporting and the wider adoption "other effective area-based conservation measures"; restoring disturbed landscapes; and bolstering transboundary PAs.
Studies have indicated that up to 47% of total N fertilizer applied in flooded rice fields may be lost to the atmosphere through NH3 volatilization. The volatilized NH3 represents monetary loss and contributes to increase in formation of PM2.5 in the atmosphere, eutrophication in surface water, and degrades water and soil quality. The NH3 is also a precursor to N2O formation. Thus, it is important to monitor NH3 volatilization from fertilized and flooded rice fields. Commercially available samplers offer ease of transportation and installation, and thus, may be considered as NH3 absorbents for the static chamber method. Hence, the objective of this study is to investigate the use of a commercially available NH3 sampler/absorbent (i.e., Ogawa® passive sampler) for implementation in a static chamber. In this study, forty closed static chambers were used to study two factors (i.e., trapping methods, exposure duration) arranged in a Randomized Complete Block Design. The three trapping methods are standard boric acid solution, Ogawa® passive sampler with acid-coated pads and exposed coated pads without casing. The exposure durations are 1 and 4 h. Results suggest that different levels of absorbed NH3 was obtained for each of the trapping methods. Highest level of NH3 was trapped by the standard boric acid solution, followed by the exposed acid-coated pads without casing, and finally acid-coated pads with protective casing, given the same exposure duration. The differences in absorbed NH3 under same conditions does not warrant direct comparison across the different trapping methods. Any three trapping methods can be used for conducting studies to compare multi-treatments using the static chamber method, provided the same trapping method is applied for all chambers.
The continually expanding global population has necessitated increased food supply production. Thus, agricultural intensification has been required to keep up with food supply demand, resulting in a sharp rise in pesticide use. The pesticide aids in the prevention of potential losses caused by pests, plant pathogens, and weeds, but excessive use over time has accumulated its occurrence in the environment and subsequently rendered it one of the emerging contaminants of concern. This review highlights the sources and classification of herbicides and their fate in the environment, with a special focus on the effects on human health and methods to remove herbicides. The human health impacts discussion was in relation to toxic effects, cell disruption, carcinogenic impacts, negative fertility effects, and neurological impacts. The removal treatments described herein include physicochemical, biological, and chemical treatment approaches, and advanced oxidation processes (AOPs). Also, alternative, green, and sustainable treatment options were discussed to shed insight into effective treatment technologies for herbicides. To conclude, this review serves as a stepping stone to a better environment with herbicides.
The increasing global demand for palm oil and its derivatives has led to significant environmental and social concerns, prompting the need for sustainable practices in oil palm production. In recent years, digital technologies have emerged as a potential solution to enhance sustainability in this sector. The objective of this review was to provide insights into the potential benefits and limitations of digital technologies in promoting sustainable practices in the oil palm industry, and to identify key challenges that must be addressed to ensure that digitalization contributes to sustainable development in this sector. To obtain valuable insights on this topic, this review employed a thorough analysis and exploration of relevant literature. Our findings highlight the transformative potential of digital technologies such as precision agriculture, data analytics, blockchain, and robotics to optimize resource utilization, improving efficiency, promoting social welfare, improving supply chain transparency, mitigating environmental impacts, and enhancing sustainability in oil palm production. However, the adoption of these technologies is hindered by several challenges, including high cost, lack of knowledge, and inadequate infrastructure. Our findings emphasize the importance of supportive policies, collaborative efforts, and targeted research to promote technology adoption and ensure equitable benefits across the oil palm industry. Recommendations are provided for industry stakeholders, policymakers, and researchers to leverage digitalization effectively and promote sustainable practices in the oil palm industry, ultimately contributing to global sustainability goals.
In recent decades, global oil palm production has shown an abrupt increase, with almost 90% produced in Southeast Asia alone. To understand trends in oil palm plantation expansion and for landscape-level planning, accurate maps are needed. Although different oil palm maps have been produced using remote sensing in the past, here we use Sentinel 1 imagery to generate an oil palm plantation map for Indonesia, Malaysia and Thailand for the year 2017. In addition to location, the age of the oil palm plantation is critical for calculating yields. Here we have used a Landsat time series approach to determine the year in which the oil palm plantations are first detected, at which point they are 2 to 3 years of age. From this, the approximate age of the oil palm plantation in 2017 can be derived.
Healthy farming systems play a vital role in improving agricultural productivity and sustainable food production. The present study aimed to propose an efficient framework to evaluate ecologically viable and economically sound farming systems using a matrix-based analytic hierarchy process (AHP) and weighted linear combination method with geo-informatics tools. The proposed framework has been developed and tested in the Central Highlands of Sri Lanka. Results reveal that more than 50% of farming systems demonstrated moderate status in terms of ecological and economic aspects. However, two vulnerable farming systems on the western slopes of the Central Highlands, named WL1a and WM1a, were identified as very poor status. These farming systems should be a top priority for restoration planning and soil conservation to prevent further deterioration. Findings indicate that a combination of ecologically viable (nine indicators) and economical sound (four indicators) criteria are a practical method to scrutinize farming systems and decision making on soil conservation and sustainable land management. In addition, this research introduces a novel approach to delineate the farming systems based on agro-ecological regions and cropping areas using geo-informatics technology. This framework and methodology can be employed to evaluate the farming systems of other parts of the country and elsewhere to identify ecologically viable and economically sound farming systems concerning soil erosion hazards. The proposed approach addresses a new dimension of the decision-making process by evaluating the farming systems relating to soil erosion hazards and suggests introducing policies on priority-based planning for conservation with low-cost strategies for sustainable land management.
Ephemeral wetlands in arid regions are often degraded or destroyed through poor land-use practice long before they are ever studied or prioritized for conservation. Climate change will likely also have implications for these ecosystems given forecast changes in rainfall patterns in many arid environments. Here, we present a conceptual diagram showing typical and modified ephemeral wetlands in agricultural landscapes and how modification impacts on species diversity and composition.
This study proposes an integrated cattle breeding and cultivation system that provides zero emission and sustainable livelihood for the community in rural areas. The proposed integrated farming system improves agricultural productivity and environmental and sanitation conditions, minimizes the amount of waste, and increases the family income up to 41.55%. Several waste types can be recycled and transformed into valuable products, such as energy for cooking, organic fertilizer for crops, and cattle feed for breeding. Wastewater effluent from the biogas tank can be treated by biochar and results show that it then meets the standards for irrigation purposes. Also, the waste flow from cattle breeding supplies enough nutrients to cultivate plants, and the plants grown supply are adequate food for the 30 cows living on the farm. This research shows that the use of an integrated farming system could achieve zero-emission goal. Thereby, it provides a sustainable livelihood for cattle breeding family farms. The proposed integrated cattle breeding and cultivation system improves agricultural productivity, environmental and increases the farmer income up to 41.55%.