CONCLUSION: The progress of developing a cancer treatment that may successfully and efficiently target mutant p53 is on the verge of development. Mutant p53 proteins not only initiate oncogenesis but also cause resistance in cancer cells to certain chemo or radiotherapies, further endorse cancer cell survival and promote migration as well as metastasis of cancerous cells. With this regard, many mutant p53 inhibitors have been developed, some of which are currently being evaluated at the pre-clinical level and have been identified and discussed. To date, APR-246 is the most prominent one that has progressed to the Phase III clinical trial.
METHODS: Cultured PC12 cells were either treated with MPP+ alone or co-treated with one of the omega-6 fatty acids for 1 day. Cell viability was then assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
RESULTS: Cells treated with 500 μM MPP+ for a day reduced cell viability to ~70% as compared to control group. Linoleic acid (50 and 100 μM) significantly reduced MPP+-induced cell death back to ~85-90% of the control value. The protective effect could be mimicked by arachidonic acid, but not by ciglitazone.
CONCLUSIONS: Both linoleic acid and arachidonic acid are able to inhibit MPP+-induced toxicity in PC12 cells. The protection is not mediated via peroxisome proliferator-activated receptor gamma (PPAR-γ). Overall, the results suggest the potential role of omega-6 fatty acids in the treatment of Parkinson's disease.