Displaying publications 21 - 40 of 102 in total

Abstract:
Sort:
  1. Mutafi A, Yidris N, Koloor SSR, Petrů M
    Materials (Basel), 2020 Nov 26;13(23).
    PMID: 33256257 DOI: 10.3390/ma13235378
    Stainless steels are increasingly used in construction today, especially in harsh environments, in which steel corrosion commonly occurs. Cold-formed stainless steel structures are currently increasing in popularity because of its efficiency in load-bearing capacity and its appealing architectural appearance. Cold-rolling and press-braking are the cold-working processes used in the forming of stainless steel sections. Press braking can produce large cross-sections from thin to thick-walled sections compared to cold-rolling. Cold-forming in press-braked sections significantly affect member behaviour and joints; therefore, they have attained great attention from many researchers to initiate investigations on those effects. This paper examines the behaviour of residual stress distribution of stainless steel press-braked sections by implementing three-dimensional finite element (3D-FE) technique. The study proposed a full finite element procedure to predict the residual stresses starting from coiling-uncoiling to press-braking. This work considered material anisotropy to examine its effect on the residual stress distribution. The technique adopted was compared with different finite element techniques in the literature. This study also provided a parametric study for three corner radius-to-thickness ratios looking at the through-thickness residual stress distribution of four stainless steels (i.e., ferritic, austenitic, duplex, lean duplex) in which have their own chemical composition. In conclusion, the comparison showed that the adopted technique provides a detailed prediction of residual stress distribution. The influence of geometrical aspects is more pronounced than the material properties. Neglecting the material anisotropy shows higher shifting in the neutral axis. The parametric study showed that all stainless steel types have the same stress through-thickness distribution. Moreover, R/t ratios' effect is insignificant in all transverse residual stress distributions, but a slight change to R/t ratios can affect the longitudinal residual stress distribution.
    Matched MeSH terms: Corrosion
  2. Teddy, T., Irwan, J.M., Othman, N.
    MyJurnal
    Strength and durability are important characteristics of concrete and desired engineering properties. Exposure to aggressive environment threatens durability of concrete. Previous studies on bio-concrete using several types of bacteria, including sulphate reduction bacteria (SRB), had to increase durability of concrete have shown promising results. This study used mixtures designed according to concrete requirement for sea water condition with SRB composition of 3%, 5% and 7% respectively. The curing time were 28, 56 and 90 days respectively. The mechanical properties, namely compressive strength and water permeability, were tested using cube samples. The results showed compressive strength had higher increase than the control at 53.9 Mpa. The SRB with 3%composition had maximum water permeability. Thus, adding SRB in concrete specimens improves compressive strength and water permeability. This is particularly suitable for applications using chloride ion penetration (sea water condition) where corrosion tends to affect durability of concrete constructions.
    Matched MeSH terms: Corrosion
  3. Shah M, Ayob MTM, Rosdan R, Yaakob N, Embong Z, Othman NK
    ScientificWorldJournal, 2020;2020:3989563.
    PMID: 32774180 DOI: 10.1155/2020/3989563
    H2S gas when exposed to metal can be responsible for both general and localized corrosion, which depend on several parameters such as H2S concentration and the corrosion product layer formed. Therefore, the formation of passive film on 316L steel when exposed to H2S environment was investigated using several analysis methods such as FESEM and STEM/EDS analyses, which identified a sulfur species underneath the porous structure of the passive film. X-ray photoelectron spectroscopy analysis demonstrated that the first layer of CrO3 and Cr2O3 was dissolved, accelerated by the presence of H2S-Cl-. An FeS2 layer was formed by incorporation of Fe and sulfide; then, passivation by Mo took place by forming a MoO2 layer. NiO, Ni(OH)2, and NiS barriers are formed as final protection for 316L steel. Therefore, Ni and Mo play an important role as a dual barrier to maintain the stability of 316L steel in high pH2S environments. For safety concern, this paper is aimed to point out a few challenges dealing with high partial pressure of H2S and limitation of 316L steel under highly sour condition for the oil and gas production system.
    Matched MeSH terms: Corrosion
  4. Saud SN, Hosseinian S R, Bakhsheshi-Rad HR, Yaghoubidoust F, Iqbal N, Hamzah E, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:687-694.
    PMID: 27524069 DOI: 10.1016/j.msec.2016.06.048
    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications.
    Matched MeSH terms: Corrosion
  5. Fayyaz O, Khan A, Shakoor RA, Hasan A, Yusuf MM, Montemor MF, et al.
    Sci Rep, 2021 Mar 05;11(1):5327.
    PMID: 33674680 DOI: 10.1038/s41598-021-84716-6
    In the present study, the effect of concentration of titanium carbide (TiC) particles on the structural, mechanical, and electrochemical properties of Ni-P composite coatings was investigated. Various amounts of TiC particles (0, 0.5, 1.0, 1.5, and 2.0 g L-1) were co-electrodeposited in the Ni-P matrix under optimized conditions and then characterized by employing various techniques. The structural analysis of prepared coatings indicates uniform, compact, and nodular structured coatings without any noticeable defects. Vickers microhardness and nanoindentation results demonstrate the increase in the hardness with an increasing amount of TiC particles attaining its terminal value (593HV100) at the concentration of 1.5 g L-1. Further increase in the concentration of TiC particles results in a decrease in hardness, which can be ascribed to their accumulation in the Ni-P matrix. The electrochemical results indicate the improvement in corrosion protection efficiency of coatings with an increasing amount of TiC particles reaching to ~ 92% at 2.0 g L-1, which can be ascribed to a reduction in the active area of the Ni-P matrix by the presence of inactive ceramic particles. The favorable structural, mechanical, and corrosion protection characteristics of Ni-P-TiC composite coatings suggest their potential applications in many industrial applications.
    Matched MeSH terms: Corrosion
  6. Syaidah Athirah Dzolin, Yusairie Mohd, Hadariah Bahron, Nurul Huda Abdul Halim
    MyJurnal
    The syntheses of salicylideneaniline (L1a) and 4-hydroxybenzalaniline (L1b) was carried out via condensation reaction giving yields of 80.74% and 81.65% respectively. The compounds were characterised by physical and spectroscopic techniques, namely melting point, micro elemental analysis (C, H and N), 1H Nuclear Magnetic Resonance (NMR) and Infrared (IR) spectroscopy. The characteristic n(C=N) peaks were observed at 1615 cm-1 and 1575 cm-1 respectively. Chronoamperometry (CA) was employed to electrodeposit both compounds on mild steel at 0.1 M inhibitor concentration in 0.3 M NaOH at three different potentials, +0.8 V, +1.05 V and +1.7 V. Formation of yellow imine films was observed on the mild steel. The corrosion behaviour of coated and uncoated mild steel was studied using Linear Polarization Resistance (LPR) in 0.5 M NaCl. Coated mild steel showed better corrosion resistance and with the highest inhibition efficiency of 90.34%, L1a provides a better protection against corrosion for mild steel than L1b.
    Matched MeSH terms: Corrosion
  7. Nur Alia Atiqah Alias, Nabilah Syakirah Zolkifli, Mimi Wahidah Mohd Radzi, Nur Nadia Dzulkifli
    MyJurnal
    Mild steel plays an essential part in many construction industries due to its low cost and excellent mechanical properties. However, the use of strong acid in pickling, construction, and oil refining processes adds to a serious corrosion problem for mild steel. Two Cu(II) dithiocarbamate (DTC) complexes were successfully synthesised, namely Cu(II) ethyl-benzyl DTC (Cu[EtBenzdtc]2) and Cu(II) butyl-methyl DTC (Cu[BuMedtc]2) complexes, by a condensation reaction and subsequently used to scrutinise the corrosion resistance activity towards mild steel in acidic media. The proposed structures of complexes were characterised by using the Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies. The melting point for Cu[EtBenzdtc]2 was found around 362–375°C, and 389–392°C for Cu[BuMedtc]2. The percentages of Cu(II) found in Cu[EtBenzdtc]2 and Cu[BuMedtc]2 were 7.6% and 7.5%, respectively. Both complexes were non-electrolyte based on the molar conductivity analysis. Their corrosion inhibition performances were tested by using a weight loss measurement. Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2. The complexes showed good effectiveness in sulfuric acid (H2SO4) compared to hydrochloric acid (HCl) solution. Furthermore, Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2 with the highest percentage of corrosion inhibition recorded at 91.8%. Meanwhile, the highest percentage of corrosion inhibition shown by Cu[EtBenzdtc]2 was only 86.9%. The lowest corrosion rate shown for Cu[BuMedtc]2 was 8.1944×10-4 cm-1 h-1. Meanwhile, the Cu[EtBenzdtc]2 showed the lowest corrosion rate only at 1.3194×10-3 cm-1 h-1. This implies that Cu[BuMedtc]2 showed lower corrosion rate but higher inhibition efficiency compared to Cu[EtBenzdtc]2.
    Matched MeSH terms: Corrosion
  8. Husniyati Roslan, Fatanah M. Suhaimi, Zawiah Musa, Nizuwan Azman, Nur Jihan Mohd Zukhi
    MyJurnal
    Sterilisation is an essential step in the reprocessing of reusable dental instruments including burs that have become contaminated, or potentially contaminated. Transmission of disease or infection may happen as an effect of improper sterilisation of the reused instruments. Dental burs are one of the essential tools in any conservative dental procedures, which undergo multiple sterilisation cycles before being discarded. However, repeated sterilisation process is associated with the reduction in cutting efficiency of a bur that is potentially due to corrosion. Thus, this study aims to compare the effect of two sterilisation methods on cutting efficiency of a diamond bur that is commonly used in dental procedures. Methods: 30 fissure diamond burs were randomly divided into three sterilisation groups: Group A (dry heat), B (steam under pressure) and C (control). Each bur was used to cut teeth for 45 seconds for ten cycles. Between cuts, the burs underwent sterilisation based on their sterilisation groups. Amount of cutting weight was measured after each cut. Results: This study shows that no significant difference (p>0.05) in the cutting efficiency of the burs following sterilisation of Groups A and B. However, there is a significant mean difference (p
    Matched MeSH terms: Corrosion
  9. Md Yusop AH, Wan Ali WFF, Jamaludin FH, Szali Januddi F, Sarian MN, Saad N, et al.
    Biotechnol J, 2024 Mar;19(3):e2300464.
    PMID: 38509814 DOI: 10.1002/biot.202300464
    The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.
    Matched MeSH terms: Corrosion
  10. Siti Noriah Mohd Shotor, Nur Anis Atirah Zulkiflee
    MyJurnal
    This paper deals with a review of the inhibition activity of a Schiff bases on the deterioration of mild steel in hydrochloric acid media. Two Schiff base ligands namely N,N’- Bis(salicylidene) ethylenediamine (Sadimine) and N,N’-Bis(bromosalicylidene)- ethylenediamine (Brosadimine) were synthesized from the condensation reactions of salicylaldehyde or 5-bromosalicylaldehyde with ethylenediamine respectively and evaluated as corrosion inhibitor for mild steel in 1 M HCl solution using weight loss method. The use of inhibitors is one of the most practical methods for protection of mild steel against corrosion in acidic media. Schiff bases are widely being employed in such applications. This paper highlights the influence of structure–inhibition activity relationship of Schiff base compounds
    on their performance as corrosion inhibitors of mild steel in acid media. Sadimine and
    Brosadimine show appreciable corrosion inhibition efficiency against the corrosion of mild
    steel in 1 M HCl solution at room temperature. It has been found that Brosadimine shows
    greater corrosion inhibition efficiency than Sadimine due to extra halogen group presence in
    the structure. As the concentration of studied inhibitors increases, the corrosion inhibition
    efficiency of the prepared compounds also increases. This study demonstrated that corrosion
    inhibitors for metals and alloys can preserve the quality and life of metals from corrosion.
    Matched MeSH terms: Corrosion
  11. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Corrosion
  12. Nurul Atikah Shariff, Azman Jalar, Muhamad Izhar Sahri, Norinsan Kamil Othman
    Sains Malaysiana, 2014;43:1069-1075.
    Austenitic stainless steels of grade 304 were exposed to dry (Ar-75%CO2) and wet (Ar-75%CO2-12%H2O) environments at 700oC. This experimental setup involved horizontal tube furnace connected to CO2 gas and water vapour facilities. X-ray diffraction (XRD) technique, variable pressure-scanning electron microscope (VP-SEM) and optical microscope techniques were used to characterize the products of corrosion. The results of XRD showed that the phase of oxide layers consists of Cr2O3 and NiCr2O4 in dry CO2, meanwhile Fe2O3, Cr2O3, Fe0.56Ni0.34, Fe3O4 were identified in wet condition after 50 h. Adding 12%H2O in Ar-75%CO2 leads significantly in weight change occurred at 10 h exposure. However, after 20 h, the weight gain was decreased due to spallation of the oxide scale. The addition of water vapour accelerates the oxidation rate on the steel than that in dry condition. Morphologies and growth kinetics of these oxides vary with reaction condition. The oxidation behaviour at different times of exposure and the effect of water vapour were discussed in correlation with the microstructure of the oxides.
    Matched MeSH terms: Corrosion
  13. Mohammad Hafizudden Mohd Zaki, Yusairie Mohd, Nik Norziehana Che Isa
    Science Letters, 2016;11(2):20-29.
    MyJurnal
    Mild steel is the most common metal used in industry. However, mild steel easily corrodes when exposed to environment. One way to protect mild steel from corrodes is by coating it with more noble metal like copper and its alloys. In this study, copper and Cu-Ni alloys were successfully coated on the mild steel substrate by electrodeposition technique using alkaline citrate solutions containing Cu and Ni ions precursors. The reaction and mechanisms of the electrodeposition of copper and Cu-Ni alloys on the mild steel substrate were investigated by cyclic voltammetry and chronoamperometry methods. Surface morphology of the coatings was examined by FESEM. The elemental compositions of the coatings were confirmed by EDAX analysis. The molar ratios of Cu-Ni solutions have affected the formation of the coatings. Corrosion study shows that copper coated mild steel can improve the corrosion resistance of the mild steel in 0.5 M NaCl. Cu-Ni coating prepared from Cu60-Ni40 showed the highest corrosion resistance. The order of the corrosion resistance of the samples in 0.5 M NaCl at 25 oC is Cu60-Ni40> Cu75- Ni25> Cu90-Ni10> Cu100> mild steel.
    Matched MeSH terms: Corrosion
  14. Wu H, Kong XY, Wen X, Chai SP, Lovell EC, Tang J, et al.
    Angew Chem Int Ed Engl, 2021 Apr 06;60(15):8455-8459.
    PMID: 33368920 DOI: 10.1002/anie.202015735
    Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.
    Matched MeSH terms: Corrosion
  15. Kashyap S, Kumar S, Ramasamy K, Lim SM, Shah SAA, Om H, et al.
    Chem Cent J, 2018 Nov 20;12(1):117.
    PMID: 30460466 DOI: 10.1186/s13065-018-0487-1
    BACKGROUND: The transition metal complexes formed from Schiff base is regarded as leading molecules in medicinal chemistry. Because of the preparative availability and diversity in the structure of central group, the transition metals are important in coordination chemistry. In the present work, we have designed and prepared Schiff base and its metal complexes (MC1-MC4) and screened them for antimicrobial, anticancer and corrosion inhibitory properties.

    METHODOLOGY: The synthesized metal complexes were characterized by physicochemical and spectral investigation (UV, IR, 1H and 13C-NMR) and were further evaluated for their antimicrobial (tube dilution) and anticancer (SRB assay) activities. In addition, the corrosion inhibition potential was determined by electrochemical impedance spectroscopy (EIS) technique.

    RESULTS AND DISCUSSION: Antimicrobial screening results found complexes (MC1-MC4) to exhibit less antibacterial activity against the tested bacterial species compared to ofloxacin while the complex MC1 exhibited greater antifungal activity than the fluconazole. The anticancer activity results found the synthesized Schiff base and its metal complexes to elicit poor cytotoxic activity than the standard drug (5-fluorouracil) against HCT116 cancer cell line. Metal complex MC2 showed more corrosion inhibition efficiency with high Rct values and low Cdl values.

    CONCLUSION: From the results, we can conclude that complexes MC1 and MC2 may be used as potent antimicrobial and anticorrosion agents, respectively.

    Matched MeSH terms: Corrosion
  16. Kadhum AAH, Mohamad AB, Hammed LA, Al-Amiery AA, San NH, Musa AY
    Materials (Basel), 2014 Jun 05;7(6):4335-4348.
    PMID: 28788680 DOI: 10.3390/ma7064335
    A new coumarin derivative, N,N'-((2E,2'E)-2,2'-(1,4-phenylenebis (methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, (1)H-NMR and carbon-13 nuclear magnetic resonance (13)C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.
    Matched MeSH terms: Corrosion
  17. Ahmad Fuad Ab Ghani, Mohamad Kamarul Anwar Sahar, Muhammad Ridzuan Husyairi Azmi, Nurul Izzati Medon, Muhammad Syazwan Samsuri, Muhammad Syurabil Abdani
    MyJurnal
    There are several types of grating, such as platform, bridge decks and filters. In design process, there
    are several important terms that have to be prioritised; engineering design, strength to weight ratio, cost,
    maintainability, reparability etcetera. Advanced materials, such as composite materials offer great
    strength to weight ratio and high mechanical properties for grating fabrication. Furthermore the
    reparability and maintenance problems could be solved as it is anti corrosion and the long service life
    attribute of composite makes it a great design material for replacement of conventional steel or
    aluminium. Bio composites, such as bamboo and coir fiber yield advantage in terms of less cost and
    abundance availability compared to commercial unidirectional composite materials, such as glass fiber
    reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) which is considerably
    expensive yet possess higher mechanical properties. This papers presents a conceptual design of
    grating design utilizing bamboo composite as material. Pugh method has been chosen as design criteria
    selection matrix in finalizing the design of industrial grating for scaffolding (Pugh, 1991).
    Matched MeSH terms: Corrosion
  18. Nur Azida Che Lah, Muhamad Hellmy Hussin
    MyJurnal
    Titanium (Ti) and Ti-based alloys presence the most widely applied as advanced biomaterials
    in biomedical implant applications. Moreover, these alloys are known to be the most
    valuable metallic materials including spinal cord surgical treatment. It becomes an interest
    due to its advantages compared to others, including its bio compatibility and corrosion
    resistant. However, an issue arises when it comes for permanent implant application as
    the alloy has a possible toxic effect produced from chemical reaction between body fluid
    environments with alloys chemical compositions. It also relies on the performance of
    neighbouring bone tissue to integrate with the implant surface. Abnormalities usually
    happen when surrounding tissue shows poor responses and rejection of implants that would
    leads to body inflammation. These cause an increase in foreign body reaction leading to
    severe body tissue response and thus, loosening of the implant. Corrosion effects and
    biocompatibility behaviour of implantation usage also become one of the reasons of
    implant damage. Here, this paper reviews the importance of using Ti and Ti-based alloys
    in biomedical implantation, especially in orthopaedic spinal cord injury. It also reviews the
    basic aspects of corrosion effects that lead to implant mechanical damage, poor response
    of body rejection and biocompatibility behaviour of implantation usage.
    Matched MeSH terms: Corrosion
  19. Mat-Baharin NH, Razali M, Mohd-Said S, Syarif J, Muchtar A
    J Prosthodont Res, 2020 Oct;64(4):490-497.
    PMID: 32063537 DOI: 10.1016/j.jpor.2020.01.004
    PURPOSE: Not all elements with β-stabilizing properties in titanium alloys are suitable for biomaterial applications, because corrosion and wear processes release the alloying elements to the surrounding tissue. Chromium and molybdenum were selected as the alloying element in this work as to find balance between the strength and modulus of elasticity of β-titanium alloys. This study aimed to investigate the effect of Titanium-10Molybdenum-10Chromium (Ti-10Mo-10Cr), Titanium-10Chromium (Ti-10Cr) and Titanium-10Molybdenum (Ti-10Mo) on the elemental leachability in tissue culture environment and their effect on the viability of human gingival fibroblasts (HGFs).

    METHODS: Each alloy was immersed in growth medium for 0-21 days, and the elution was analyzed to detect the released metals. The elution was further used as the treatment medium and exposed to seeded HGFs overnight. The HGFs were also cultured directly to the titanium alloy for 1, 3 and 7 days. Cell viability was then determined.

    RESULTS: Six metal elements were detected in the immersion of titanium alloys. Among these elements, molybdenum released from Ti-10Mo-10Cr had the highest concentration throughout the immersion period. Significant difference in the viability of fibroblast cells treated with growth medium containing metals and with direct exposure technique was not observed. The duration of immersion did not significantly affect cell viability. Nevertheless, cell viability was significantly affected after 1 and 7 days of exposure, when the cells were grown directly onto the alloy surfaces.

    CONCLUSIONS: Within the limitation of this study, the newly developed β-titanium alloys are non-cytotoxic to human gingival fibroblasts.

    Matched MeSH terms: Corrosion
  20. Zaifol Samsu, Muhamad Daud, Siti Radiah Mohd Kamarudin, Nur Ubaidah Saidin, Abdul Aziz Mohamed, Mohd Sa’ari Ripin, et al.
    MyJurnal
    Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. The use of boundary element analysis system (BEASY) has allowed cathodic protection (CP) interference to be assessed in terms of the normal current density, which is directly proportional to the corrosion rate. This paper was present the analysis of the galvanic corrosion between Aluminium and Carbon Steel in natural sea water. The result of experimental was validated with computer simulation like BEASY program. Finally, it can conclude that the BEASY software is a very helpful tool for
    future planning before installing any structure, where it gives the possible CP interference on any nearby unprotected metallic structure.
    Matched MeSH terms: Corrosion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links