Displaying publications 21 - 40 of 121 in total

Abstract:
Sort:
  1. Aziz MY, Abu N, Yeap SK, Ho WY, Omar AR, Ismail NH, et al.
    Molecules, 2016 Sep 14;21(9).
    PMID: 27649120 DOI: 10.3390/molecules21091228
    Despite progressive research being done on drug therapy to treat breast cancer, the number of patients succumbing to the disease is still a major issue. Combinatorial treatment using different drugs and herbs to treat cancer patients is of major interest in scientists nowadays. Doxorubicin is one of the most used drugs to treat breast cancer patients. The combination of doxorubicin to other drugs such as tamoxifen has been reported. Nevertheless, the combination of doxorubicin with a natural product-derived agent has not been studied yet. Morinda citrifolia has always been sought out for its remarkable remedies. Damnacanthal, an anthraquinone that can be extracted from the roots of Morinda citrifolia is a promising compound that possesses a variety of biological properties. This study aimed to study the therapeutic effects of damnacanthal in combination with doxorubicin in breast cancer cells. Collectively, the combination of both these molecules enhanced the efficacy of induced cell death in MCF-7 as evidenced by the MTT assay, cell cycle, annexin V and expression of apoptosis-related genes and proteins. The effectiveness of doxorubicin as an anti-cancer drug was increased upon addition of damnacanthal. These results could provide a promising approach to treat breast cancer patients.
    Matched MeSH terms: Doxorubicin/pharmacology; Doxorubicin/chemistry
  2. Nawawi O, Hazman M, Abdullah B, Vijayananthan A, Manikam J, Mahadeva S, et al.
    Biomed Imaging Interv J, 2010 Jan-Mar;6(1):e7.
    PMID: 21611067 MyJurnal DOI: 10.2349/biij.6.1.e7
    This is a retrospective study to evaluate the results of our early experience of using doxorubicin eluting beads (DEB) to treat patients with early and intermediate hepatocellular carcinoma (HCC).
    Matched MeSH terms: Doxorubicin
  3. Hamidu A, Mokrish A, Mansor R, Razak ISA, Danmaigoro A, Jaji AZ, et al.
    Int J Nanomedicine, 2019;14:3615-3627.
    PMID: 31190815 DOI: 10.2147/IJN.S190830
    Purpose: Modified top-down procedure was successfully employed in the synthesis of aragonite nanoparticles (NPs) from cheaply available natural seawater cockle shells. This was with the aim of developing a pH-sensitive nano-carrier for effective delivery of doxorubicin (DOX) on MCF-7 breast cancer cell line. Methods: The shells were cleaned with banana pelts, ground using a mortar and pestle, and stirred vigorously on a rotary pulverizing blending machine in dodecyl dimethyl betane solution. This simple procedure avoids the use of stringent temperatures and unsafe chemicals associated with NP production. The synthesized NPs were loaded with DOX to form DOX-NPs. The free and DOX-loaded NPs were characterized for physicochemical properties using field emission scanning electron microscopy, transmission electron microscopy, zeta potential analysis, Fourier transform infrared spectroscopy, and X-ray diffraction. The release profile, cytotoxicity, and cell uptake were evaluated. Results: NPs had an average diameter of 35.50 nm, 19.3% loading content, 97% encapsulation efficiency, and a surface potential and intensity of 19.1±3.9 mV and 100%, respectively. A slow and sustained pH-specific controlled discharge profile of DOX from DOX-NPs was observed, clearly showing apoptosis/necrosis induced by DOX-NPs through endocytosis. The DOX-NPs had IC50 values 1.829, 0.902, and 1.0377 µg/mL at 24, 48, and 72 hrs, while those of DOX alone were 0.475, 0.2483, and 0.0723 µg/mL, respectively. However, even at higher concentration, no apparent toxicity was observed with the NPs, revealing their compatibility with MCF-7 cells with a viability of 92%. Conclusions: The modified method of NPs synthesis suggests the tremendous potential of the NPs as pH-sensitive nano-carriers in cancer management because of their pH targeting ability toward cancerous cells.
    Matched MeSH terms: Doxorubicin/administration & dosage*; Doxorubicin/pharmacology; Doxorubicin/therapeutic use*
  4. Siriviriyanun A, Tsai YJ, Voon SH, Kiew SF, Imae T, Kiew LV, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Aug 01;89:307-315.
    PMID: 29752102 DOI: 10.1016/j.msec.2018.04.020
    In this study, nanohybrid materials consisting of graphene oxide (GO), β‑cyclodextrin (CD) and poly(amido amine) dendrimer (DEN) were successfully prepared by covalent bonding. GO-CD and GO-CD-DEN were found to be potential nanocarriers for anticancer drugs including chemotherapeutics (doxorubicin (DOX), camptothecin (CPT)) and photosensitizer (protoporphyrin IX (PpIX)). GO-CD possessed 1.2 times higher DOX-loading capacity than GO due to inclusion of additional DOX to the CD. The drug loading on GO-CD-DEN increased in the order: DOX 
    Matched MeSH terms: Doxorubicin/metabolism; Doxorubicin/pharmacology; Doxorubicin/chemistry
  5. Biabanikhankahdani R, Ho KL, Alitheen NB, Tan WS
    Nanomaterials (Basel), 2018 Apr 13;8(4).
    PMID: 29652827 DOI: 10.3390/nano8040236
    Modifications of virus-like nanoparticles (VLNPs) using chemical conjugation techniques have brought the field of virology closer to nanotechnology. The huge surface area to volume ratio of VLNPs permits multiple copies of a targeting ligand and drugs to be attached per nanoparticle. By exploring the chemistry of truncated hepatitis B core antigen (tHBcAg) VLNPs, doxorubicin (DOX) was coupled covalently to the external surface of these nanoparticles via carboxylate groups. About 1600 DOX molecules were conjugated on each tHBcAg VLNP. Then, folic acid (FA) was conjugated to lysine residues of tHBcAg VLNPs to target the nanoparticles to cancer cells over-expressing folic acid receptor (FR). The result demonstrated that the dual bioconjugated tHBcAg VLNPs increased the accumulation and uptake of DOX in the human cervical and colorectal cancer cell lines compared with free DOX, resulting in enhanced cytotoxicity of DOX towards these cells. The fabrication of these dual bioconjugated nanoparticles is simple, and drugs can be easily conjugated with a high coupling efficacy to the VLNPs without any limitation with respect to the cargo's size or charge, as compared with the pH-responsive system based on tHBcAg VLNPs. These dual bioconjugated nanoparticles also have the potential to be modified for other combinatorial drug deliveries.
    Matched MeSH terms: Doxorubicin
  6. Dabbagh A, Mahmoodian R, Abdullah BJ, Abdullah H, Hamdi M, Abu Kasim NH
    Int J Hyperthermia, 2015;31(8):920-9.
    PMID: 26670340 DOI: 10.3109/02656736.2015.1094147
    The aim of this paper was to synthesise core-shell nanostructures comprised of mesoporous silica core and a low melting-point polyethylene glycol (PEG) nanoshell with a sharp gel-liquid phase transition for rapid drug release at hyperthermia temperature range.
    Matched MeSH terms: Doxorubicin/chemistry
  7. Dabbagh A, Abdullah BJ, Abu Kasim NH, Abdullah H, Hamdi M
    Int J Hyperthermia, 2015 Jun;31(4):375-85.
    PMID: 25716769 DOI: 10.3109/02656736.2015.1006268
    The aim of this paper was to introduce a new mechanism of thermal sensitivity in nanocarriers that results in a relatively low drug release at physiological temperature and rapid release of the encapsulated drug at hyperthermia and thermal ablation temperature range (40-60 °C).
    Matched MeSH terms: Doxorubicin/pharmacology
  8. Taib F, Mohamad N, Mohamed Daud MA, Hassan A, Singh MS, Nasir A
    Urology, 2012 Oct;80(4):931-3.
    PMID: 22854139 DOI: 10.1016/j.urology.2012.05.021
    Fibrosarcoma is rare in the pediatric age group. It generally involves the extremities and the trunk but rarely involves the genital area. We report a case of a large fungating infantile fibrosarcoma of the penis in a 2-year-old Malay boy. Partial recovery of the penile structure was achieved after chemotherapy. The difficulty in managing the social and surgical aspect of this case is discussed in our report. To the best of our knowledge, this is the first case report of infantile fibrosarcoma involving the penis in an Asian region.
    Matched MeSH terms: Doxorubicin/administration & dosage
  9. Mahamooth Z, Awang H
    Med J Malaysia, 1983 Mar;38(1):4-8.
    PMID: 6633334
    One hundred and fifty patients with urothelial tumours were reviewed. They form the majority of patients with bladder cancer referred to the Institute of Urology over the past three years. From the study it becomes very apparent that the majority of patients are seen late in the course of their disease. The results of treatment of patients with early lesions have been satisfactory but the patients with late invasive lesions have very poor prognosis. A plea is made that one be more aware of this condition and that symptoms of haematuria and urinary tract infections should have a full urological assessment early.
    Matched MeSH terms: Doxorubicin/therapeutic use
  10. Khanijow VK, Prasad U, Chang CM
    Med J Malaysia, 1989 Dec;44(4):329-33.
    PMID: 2520043
    Nasopharyngeal carcinoma (NPC) is one of the commonest presentation of head and neck cancers in Malaysia, especially in the Chinese. The standard treatment is radical radiotherapy to the post-nasal space and the neck. Chemotherapy is given to patients with primary advanced disease and to patients with recurrence. The study reviews results of chemotherapy given to 33 patients at the University Hospital, Kuala Lumpur, over the last four years.
    Matched MeSH terms: Doxorubicin/therapeutic use
  11. Baig AM, Lalani S, Khan NA
    J Basic Microbiol, 2017 Jul;57(7):574-579.
    PMID: 28466971 DOI: 10.1002/jobm.201700025
    Here we describe features of apoptosis in unicellular Acanthamoeba castellanii belonging to the T4 genotype. When exposed to apoptosis-inducing compounds such as doxorubicin, A. castellanii trophozoites exhibited cell shrinkage and membrane blebbing as observed microscopically, DNA fragmentation using agarose gel electrophoresis, and phosphatidylserine (PS) externalization using annexin V immunostaining. Overall, these findings suggest the existence of apoptosis in A. castellanii possibly mediated by intrinsic apoptotic cascade. Further research in this field could provide avenues to selectively induce apoptosis in A. castellanii by triggering intrinsic apoptotic cascade.
    Matched MeSH terms: Doxorubicin/pharmacology
  12. Setyawati MI, Kutty RV, Leong DT
    Small, 2016 Oct;12(40):5601-5611.
    PMID: 27571230 DOI: 10.1002/smll.201601669
    Targeted drug delivery is one of the key challenges in cancer nanomedicine. Stoichiometric and spatial control over the antibodies placement on the nanomedicine vehicle holds a pivotal role to overcome this key challenge. Here, a DNA tetrahedral is designed with available conjugation sites on its vertices, allowing to bind one, two, or three cetuximab antibodies per DNA nanostructure. This stoichiometrically definable cetuximab conjugated DNA nanostructure shows enhanced targeting on the breast cancer cells, which results with higher overall killing efficacy of the cancer cells.
    Matched MeSH terms: Doxorubicin/pharmacology
  13. Lee SM
    Singapore Med J, 1990 Aug;31(4):317-20.
    PMID: 2175049
    Seventeen patients with small cell lung cancer (SCLC) were treated with cyclophosphamide, adriamycin and vincristine (CAV) combination chemotherapy. The overall response rate was 76.5% with 47% achieving complete response and 29.5% partial response. In limited and extensive stage disease, complete response was achieved in 67% and 36.5% respectively. Chinese were the predominant ethnic group affected (82%). Six patients presenting with superior vena cava obstruction responded significantly to CAV chemotherapy alone. Median survival for patients with extensive disease was 7.4 months. All patients with limited disease were still alive. Two relapsed patients with limited disease achieved significant response to VP-16/Cisplatin combination chemotherapy.
    Matched MeSH terms: Doxorubicin/administration & dosage
  14. Syahputra RA, Harahap U, Harahap Y, Gani AP, Dalimunthe A, Ahmed A, et al.
    Molecules, 2023 May 24;28(11).
    PMID: 37298779 DOI: 10.3390/molecules28114305
    Doxorubicin (DOX) has been extensively utilized in cancer treatment. However, DOX administration has adverse effects, such as cardiac injury. This study intends to analyze the expression of TGF, cytochrome c, and apoptosis on the cardiac histology of rats induced with doxorubicin, since the prevalence of cardiotoxicity remains an unpreventable problem due to a lack of understanding of the mechanism underlying the cardiotoxicity result. Vernonia amygdalina ethanol extract (VAEE) was produced by soaking dried Vernonia amygdalina leaves in ethanol. Rats were randomly divided into seven groups: K- (only given doxorubicin 15 mg/kgbw), KN (water saline), P100, P200, P400, P4600, and P800 (DOX 15 mg/kgbw + 100, 200, 400, 600, and 800 mg/kgbw extract); at the end of the study, rats were scarified, and blood was taken directly from the heart; the heart was then removed. TGF, cytochrome c, and apoptosis were stained using immunohistochemistry, whereas SOD, MDA, and GR concentration were evaluated using an ELISA kit. In conclusion, ethanol extract might protect the cardiotoxicity produced by doxorubicin by significantly reducing the expression of TGF, cytochrome c, and apoptosis in P600 and P800 compared to untreated control K- (p < 0.001). These findings suggest that Vernonia amygdalina may protect cardiac rats by reducing the apoptosis, TGF, and cytochrome c expression while not producing the doxorubicinol as doxorubicin metabolite. In the future, Vernonia amygdalina could be used as herbal preventive therapy for patient administered doxorubicin to reduce the incidence of cardiotoxicity.
    Matched MeSH terms: Doxorubicin/adverse effects
  15. Tak WY, Lin SM, Wang Y, Zheng J, Vecchione A, Park SY, et al.
    Clin Cancer Res, 2018 01 01;24(1):73-83.
    PMID: 29018051 DOI: 10.1158/1078-0432.CCR-16-2433
    Purpose: Lyso-thermosensitive liposomal doxorubicin (LTLD) consists of doxorubicin contained within a heat-sensitive liposome. When heated to ≥40°C, LTLD locally releases a high concentration of doxorubicin. We aimed to determine whether adding LTLD improves the efficacy of radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) lesions with a maximum diameter (dmax) of 3 to 7 cm.Experimental Design: The HEAT Study was a randomized, double-blind, dummy-controlled trial of RFA ± LTLD. The 701 enrolled patients had to have ≤4 unresectable HCC lesions, at least one of which had a dmax of 3 to 7 cm. The primary endpoint was progression-free survival (PFS) and a key secondary endpoint was overall survival (OS). Post hoc subset analyses investigated whether RFA duration was associated with efficacy.Results: The primary endpoint was not met; in intention-to-treat analysis, the PFS HR of RFA + LTLD versus RFA alone was 0.96 [95% confidence interval (CI), 0.79-1.18; P = 0.71], and the OS HR ratio was 0.95 (95% CI, 0.76-1.20; P = 0.67). Among 285 patients with a solitary HCC lesion who received ≥45 minutes RFA dwell time, the OS HR was 0.63 (95% CI, 0.41-0.96; P < 0.05) in favor of combination therapy. RFA + LTLD had reversible myelosuppression similar to free doxorubicin.Conclusions: Adding LTLD to RFA was safe but did not increase PFS or OS in the overall study population. However, consistent with LTLD's heat-based mechanism of action, subgroup analysis suggested that RFA + LTLD efficacy is improved when RFA dwell time for a solitary lesion ≥45 minutes. Clin Cancer Res; 24(1); 73-83. ©2017 AACR.
    Matched MeSH terms: Doxorubicin/administration & dosage; Doxorubicin/adverse effects; Doxorubicin/analogs & derivatives*; Doxorubicin/therapeutic use
  16. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Bullo S
    Drug Des Devel Ther, 2013;7:25-31.
    PMID: 23345969 DOI: 10.2147/DDDT.S37070
    The aim of the current study is to design a new nanocomposite for inducing cytotoxicity of doxorubicin and oxaliplatin toward MDA-MB231, MCF-7, and Caco2 cell lines. A hippuric acid (HA) zinc layered hydroxide (ZLH) nanocomposite was synthesized under an aqueous environment using HA and zinc oxide (ZnO) as the precursors.
    Matched MeSH terms: Doxorubicin/administration & dosage; Doxorubicin/pharmacology*
  17. Viswanathan G, Hsu YH, Voon SH, Imae T, Siriviriyanun A, Lee HB, et al.
    Macromol Biosci, 2016 06;16(6):882-95.
    PMID: 26900760 DOI: 10.1002/mabi.201500435
    Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71 D3 )-based micelles effectively encapsulate the doxorubicin (DOX) with a high drug-loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296 D1 ) vesicles. DOX released from the resultant P71 D3 /DOX micelles is approximately 1.3-fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71 D3 /DOX micelles also enhance drug potency in breast cancer MDA-MB-231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy-dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.
    Matched MeSH terms: Doxorubicin/administration & dosage*; Doxorubicin/chemistry
  18. Yeak J, Iqbal T, Zahari M, Ismail F
    Int J STD AIDS, 2019 07;30(8):802-809.
    PMID: 31046617 DOI: 10.1177/0956462418825353
    Matched MeSH terms: Doxorubicin/analogs & derivatives; Doxorubicin/therapeutic use
  19. Guo L, Zheng X, Wang E, Jia X, Wang G, Wen J
    Biomed Pharmacother, 2020 May;125:109784.
    PMID: 32092815 DOI: 10.1016/j.biopha.2019.109784
    Doxorubicin (DOX) is an eff ;ective chemotherapeutic drug to suppress the progression of various types of tumors. However, its clinical application has been largely limited due to its potential cardiotoxicity. MicroRNAs (miRNAs) are emerged as critical regulators of cardiac injury. This study was aimed to explore the effects of irigenin (IR), as an isoflavonoid isolated from the rhizome of Belamcanda chinensis, on DOX-induced cardiotoxicity using the in vivo and in vitrostudies. The results indicated that DOX-induced fibrosis, cardiac dysfunction and injury were markedly attenuated by IR through reducing apoptosis, oxidative stress and inflammation in heart tissue samples. Importantly, DOX resulted in a remarkable decrease of miR-425 in heart tissues and cells, which was significantly rescued by IR. Receptor-interacting protein kinase 1 (RIPK1) was discovered to be a direct target of miR-425. DOX induced over-expression of RIPK1 both in vivo and in vitro, which were greatly decreased by IR. Transfection with miR-425 mimic could inhibit RIPK1 expression, whereas reducing miR-425 increased RIPK1 expression levels. In parallel to miR-425 over-expression, RIPK1 knockdown could attenuate apoptosis, reactive oxygen species (ROS) production and inflammation in HL-1 cells. However, over-expression of RIPK1 markedly abolished miR-425 mimic-induced apoptosis, ROS accumulation and inflammatory response in DOX-exposed cells. Herein, miR-425 could ameliorate cardiomyocyte injury through directly targeting RIPK1. Furthermore, activation of miR-425 by IR markedly improved DOX-induced cardiotoxicity, and therefore IR could be considered as a promising therapeutic agent for the treatment of cardiac injury.
    Matched MeSH terms: Doxorubicin/adverse effects*; Doxorubicin/pharmacology*
  20. Haque ST, Islam RA, Gan SH, Chowdhury EH
    Int J Mol Sci, 2020 Sep 14;21(18).
    PMID: 32937817 DOI: 10.3390/ijms21186721
    Background: The limitations of conventional treatment modalities in cancer, especially in breast cancer, facilitated the necessity for developing a safer drug delivery system (DDS). Inorganic nano-carriers based on calcium phosphates such as hydroxyapatite (HA) and carbonate apatite (CA) have gained attention due to their biocompatibility, reduced toxicity, and improved therapeutic efficacy. Methods: In this study, the potential of goose bone ash (GBA), a natural derivative of HA or CA, was exploited as a pH-responsive carrier to successfully deliver doxorubicin (DOX), an anthracycline drug into breast cancer cells (e.g., MCF-7 and MDA-MB-231 cells). GBA in either pristine form or in suspension was characterized in terms of size, morphology, functional groups, cellular internalization, cytotoxicity, pH-responsive drug (DOX) release, and protein corona analysis. Results: The pH-responsive drug release study demonstrated the prompt release of DOX from GBA through its disintegration in acidic pH (5.5-6.5), which mimics the pH of the endosomal and lysosomal compartments as well as the stability of GBA in physiological pH (pH 7.5). The result of DOX binding with GBA indicated an increment in binding affinity with increasing concentrations of DOX. Cell viability and cytotoxicity analysis showed no innate toxicity of GBA particles. Both qualitative and quantitative cellular uptake analysis in both cell lines displayed an enhanced cellular internalization of DOX-loaded GBA compared to free DOX molecules. The protein corona spontaneously formed on the surface of GBA particles exhibited its affinity toward transport proteins, structural proteins, and a few other selective proteins. The adsorption of transport proteins could extend the circulation half-life in biological environment and increase the accumulation of the drug-loaded NPs through the enhanced permeability and retention (EPR) effect at the tumor site. Conclusion: These findings highlight the potential of GBA as a DDS to successfully deliver therapeutics into breast cancer cells.
    Matched MeSH terms: Doxorubicin/pharmacology*; Doxorubicin/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links