Displaying publications 21 - 40 of 161 in total

Abstract:
Sort:
  1. Mohan D, Khairullah NF, How YP, Sajab MS, Kaco H
    Polymers (Basel), 2020 Apr 23;12(4).
    PMID: 32340327 DOI: 10.3390/polym12040986
    Drug delivery constitutes the formulations, technologies, and systems for the transport of pharmaceutical compounds to specific areas in the body to exert safe therapeutic effects. The main criteria for selecting the correct medium for drug delivery are the quantity of the drug being carried and the amount of time required to release the drug. Hence, this research aimed to improve the aforementioned criteria by synthesizing a medium based on calcium carbonate-nanocellulose composite and evaluating its efficiency as a medium for drug delivery. Specifically, the efficiency was assessed in terms of the rates of uptake and release of 5-fluorouracil. Through the evaluation of the morphological and chemical properties of the synthesized composite, the established 3D printing profiles of nanocellulose and CaCO3 took place following the layer-by-layer films. The 3D printed double laminated CaCO3-nanocellulose managed to release the 5-fluorouracil as an effective single composition and in a time-controlled manner.
    Matched MeSH terms: Drug Compounding
  2. Abd Kadir E, Uchegbu IF, Schätzlein AG
    Int J Pharm, 2023 Jun 10;640:123036.
    PMID: 37169106 DOI: 10.1016/j.ijpharm.2023.123036
    Disulfiram (DS) is an anti-alcoholism drug capable of acting against important and hard-to-treat cancers. The drug's relative instability and variable absorption/distribution have led to its variable pharmacokinetics and suboptimal exposure. Hence, it was hypothesised that a nano-enabled form of DS might be able to overcome such limitations. Encapsulation of the labile DS was achieved with quaternary ammonium palmitoyl glycol chitosan (GCPQ) to form a high-capacity, soybean oil-based DS-GCPQ nanoemulsion. DS-GCPQ showed capability of oil-loading up to 50% v/v for a stable entrapment of high drug content. With increasing oil content (10 to 50% v/v), the mean particle size and polydispersity index were also increased (166 to 351 nm and 0.14 to 0.22, respectively) for a given amount of GCPQ. Formulations showed a highly positive particle surface charge (50.9 ± 1.3 mV), contributing to the colloidal stability of the individual particles. DS-GCPQ showed marked cytotoxicity against pancreatic cancer cell lines with enhanced activity in the presence of copper. An intravenous pharmacokinetic study of DS-GCPQ in vivo showed improved plasma drug stability with a DS half-life of 17 min. Prolonged survival was seen in tumour-bearing animals treated with DS-GCPQ supplemented with copper. In conclusion, DS-GCPQ nanoemulsion has the potential to be developed further for cancer therapeutic purposes.
    Matched MeSH terms: Drug Compounding
  3. Yeow ST, Shahar A, Abdul Aziz N, Anuar MS, Yusof YA, Taip FS
    Drug Des Devel Ther, 2011;5:465-9.
    PMID: 22162640 DOI: 10.2147/DDDT.S25047
    To investigate the effect of feed preparation characteristics and operational parameters on mixing homogeneity in a convective batch ribbon mixer.
    Matched MeSH terms: Drug Compounding/instrumentation; Drug Compounding/methods*
  4. Lukman SK, Al-Ashwal RH, Sultana N, Saidin S
    Chem Pharm Bull (Tokyo), 2019;67(5):445-451.
    PMID: 31061369 DOI: 10.1248/cpb.c18-00847
    Electrodeposition is commonly used to deposit ceramic or metal coating on metallic implants. Its utilization in depositing polymer microcapsule coating is currently being explored. However, there is no encapsulation of drug within polymer microcapsules that will enhance its chemical and biological properties. Therefore, in this study, ginseng which is known for its multiple therapeutic effects was encapsulated inside biodegradable poly(lactic-co-glycolic acid) (PLGA) microcapsules to be coated on pre-treated medical grade stainless steel 316L (SS316L) using an electrodeposition technique. Polyaniline (PANI) was incorporated within the microcapsules to drive the formation of microcapsule coating. The electrodeposition was performed at different current densities (1-3 mA) and different deposition times (20-60 s). The chemical composition, morphology and wettability of the microcapsule coatings were characterized through attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle analyses. The changes of electrolyte colors, before and after the electrodeposition were also observed. The addition of PANI has formed low wettability and uniform microcapsule coatings at 2 mA current density and 40 s deposition time. Reduction in the current density or deposition time caused less attachment of microcapsule coatings with high wettability records. While prolonging either one parameter has led to debris formation and melted microcapsules with non-uniform wettability measurements. The color of electrolytes was also changed from milky white to dark yellow when the current density and deposition time increased. The application of tolerable current density and deposition time is crucial to obtain a uniform microcapsule coating, projecting a controlled release of encapsulated drug.
    Matched MeSH terms: Drug Compounding/instrumentation; Drug Compounding/methods
  5. Fareez IM, Lim SM, Zulkefli NAA, Mishra RK, Ramasamy K
    Probiotics Antimicrob Proteins, 2018 09;10(3):543-557.
    PMID: 28493103 DOI: 10.1007/s12602-017-9284-8
    The susceptibility of probiotics to low pH and high temperature has limited their use as nutraceuticals. In this study, enhanced protection of probiotics via microencapsulation was achieved. Lactobacillus plantarum LAB12 were immobilised within polymeric matrix comprised of alginate (Alg) with supplementation of cellulose derivatives (methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC)). L. plantarum LAB12 encapsulated in Alg-HPMC(1.0) and Alg-MC(1.0) elicited improved survivability (91%) in simulated gastric conditions and facilitated maximal release (∼100%) in simulated intestinal condition. Alg-HPMC(1.0) and Alg-MC(1.0) significantly reduced (P 7 log CFU g-1. Alg-MC and Alg-HPMC improved the survival of LAB12 against simulated gastric condition (9.24 and 9.55 log CFU g-1, respectively), temperature up to 90 °C (9.54 and 9.86 log CFU g-1, respectively) and 4-week of storage at 4 °C (8.61 and 9.23 log CFU g-1, respectively) with sustained release of probiotic in intestinal condition (>9 log CFU g-1). These findings strongly suggest the potential of cellulose derivatives supplemented Alg bead as protective micro-transport for probiotic strains. They can be safely incorporated into new functional food or nutraceutical products.
    Matched MeSH terms: Drug Compounding/instrumentation; Drug Compounding/methods*
  6. Anuar MS, Briscoe BJ
    Drug Dev Ind Pharm, 2010 Aug;36(8):972-9.
    PMID: 20515396 DOI: 10.3109/03639041003610807
    It is generally accepted that the tablet elastic relaxation during compaction plays a vital role in undermining the final tablet mechanical integrity. One of the least investigated stages of the compaction process is the ejection stage.
    Matched MeSH terms: Drug Compounding/instrumentation; Drug Compounding/methods
  7. Kalani M, Yunus R
    Int J Nanomedicine, 2012;7:2165-72.
    PMID: 22619552 DOI: 10.2147/IJN.S29805
    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.
    Matched MeSH terms: Drug Compounding/instrumentation; Drug Compounding/methods
  8. Lee WJ, Tan CP, Sulaiman R, Hee YY, Chong GH
    Food Chem, 2020 Jan 30;304:125427.
    PMID: 31494501 DOI: 10.1016/j.foodchem.2019.125427
    Solution-enhanced dispersion by supercritical carbon dioxide (SEDS) and spray drying (SD) were used to microencapsulate red palm oil (RPO) to prolong the functionality of carotenes and vitamin E. The protective effects provided by SEDS and SD were evaluated in terms of the oxidative stability (65 °C for 35 days), fatty acid compositions, color change and degradation kinetics of carotenes and vitamin E (25 °C, 45 °C, 65 °C, and 85 °C for up to 198 days). SEDS microcapsules (SEDS-M) were the most oxidatively stable (total oxidation (Totox): 26.5), followed by SD microcapsules (SD-M) (34.9) and RPO (56.7). Degradation of carotenes and vitamin E fitted well a first-order kinetic model (average absolute relative deviation = 2-16%). SEDS-M offered better protection to vitamin E (Ea = 36 kJ/mol), whereas SD-M provided better protection for α + β carotene (Ea = 29 kJ/mol). Overall, encapsulation protected RPO during storage, with SEDS-microencapsulated RPO performing better than SD-microencapsulated RPO.
    Matched MeSH terms: Drug Compounding
  9. Hue, W.L., Nyam, K.L.
    MyJurnal
    Kenaf seed oil contains high amount of monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA), and bioactive compounds, such as tocopherol and phytosterol. In order to prevent bioactive compounds from oxidation, kenaf seed oil (KSO) was encapsulated by coextrusion technology. KSO and microencapsulated kenaf seed oil (MKSO) were then subjected to accelerated storage to investigate the effect of microencapsulation on the storage stability of kenaf seed oil. The changes of fatty acids profiles and bioactive compounds in oils were evaluated. Result showed that there was significant decreased (p
    Matched MeSH terms: Drug Compounding
  10. Eghbali Babadi F, Yunus R, Masoudi Soltani S, Shotipruk A
    ACS Omega, 2021 May 04;6(17):11144-11154.
    PMID: 34056270 DOI: 10.1021/acsomega.0c04353
    In this study, a mineral-based coated urea was fabricated in a rotary pan coater using a mixture of gypsum/sulfur/zeolite (G25S25Z50) as an effective and low-cost coating material. The effects of different coating compositions on the dissolution rate of urea and the crushing strength and morphology of the coated urea were investigated. A 25:25:50 (wt %) mixture of gypsum/sulfur/zeolite (G25S25Z50) increased the coating effectiveness to 34.1% with the highest crushing strength (31.06 N). The effectiveness of coated urea was further improved to 46.6% with the addition of a microcrystalline wax (3%) as a sealant. Furthermore, the release mechanisms of various urea fertilizers were determined by fitting the release profiles with six mathematical models, namely, the zeroth-order, first-order, second-order, Higuchi, Ritger & Peppas, and Kopcha models. The results showed that the release mechanism of the uncoated urea and all other coated urea followed the Ritger & Peppas model, suggesting the diffusional release from nonswellable delivery systems. In addition, due to the increased mass-transfer resistance, the kinetic constant was decreased from 0.2233 for uncoated urea to 0.1338 for G25S25Z50-coated urea and was further decreased to 0.0985 when 3% Witcovar 146 sealant was applied.
    Matched MeSH terms: Drug Compounding
  11. Sayyad M, Tiang N, Kumari Y, Goh BH, Jaiswal Y, Rosli R, et al.
    Saudi Pharm J, 2017 Feb;25(2):196-205.
    PMID: 28344469 DOI: 10.1016/j.jsps.2016.05.002
    Swietenia macrophylla (SM) is a medicinally important plant found in tropical and subtropical regions of the world. The ethyl acetate fraction of the seeds of S. macrophylla (SMEAF) is reported to exhibit potent anticancer, antitumor, anti-inflammatory and antifeedant activities. Till date, there have been no studies reported on the acute oral toxicity profile of the ethyl acetate fraction of the seeds of SM. The objective of the present study was to determine the acute toxicity of SMEAF and evaluate the in-vitro neuroprotective activity of SMEAF using primary neuronal cell cultures. In acute oral toxicity study, the SMEAF did not produce any lethal signs of morbidity and mortality. Histo-pathological findings, support the safety of SMEAF, as there were no significant changes observed in any of the parameters studied. Based on the results obtained in MTT assay, we infer that SMEAF has a significant neuroprotective effect, as it increased the cell viability and exhibited protection to the neuronal cells against TBHP induced oxidative stress. Thus, SMEAF can be suggested for use in the development of herbal drug formulations with neuroprotective potential.
    Matched MeSH terms: Drug Compounding
  12. Norhayati Pa'e, Nur Idayu Abd Hamid, Norzieana Khairuddin, Khairul Azly Zahan, Kok FS, Bazlul Mobin Siddique, et al.
    Sains Malaysiana, 2014;43:767-773.
    Nata de coco or bacterial cellulose produced by Acetobacter xylinum is a unique type of biocellulose. It contains more than 90% of water. Dried nata was preferred compared to wet form since it is more convenient and portable with stable properties. Therefore, drying process is necessary in order to produce dried nata de coco. Drying method is a key factor that influenced the properties of dried nata de coco produced. The aim of this study was to investigate the effect of different drying methods on morphology, crystallinity, swelling ability and tensile strength of dried nata de coco. Nata de coco samples were dried using three physical drying methods such as oven, tray dryer or freeze dryer until it achieved 3-5% moisture content. Obviously, the three drying techniques produced web-like structured nata de coco and quite similar crystallinity which was in range between 87 and 89%. Freeze dried sample showed the largest swelling capacity and tensile strength which was found to be 148 MPa. Different drying method gave different properties of nata de coco. Therefore, the present work proposed the most suitable drying method can be utilized based on the properties of end product needed.
    Matched MeSH terms: Drug Compounding
  13. Azmi NHS, Ming LC, Uddin ABMH, Sarker ZI, Bin LK
    Int J Pharm Compd, 2022 1 27;26(1):80-87.
    PMID: 35081048
    Oral drug delivery has been recognized as the most desirable drug administration method among other drug delivery routes due to its ease of administration, long shelf life, and low cost. Orally disintegrating tablets disintegrate within seconds in the mouth without the need of water for swallowing. This unique feature of orally disintegrating tablets is favorable to special populations such as geriatric and pediatric patients. Formulation optimization is significant to obtain the optimal combination of tablet constituents, as the tablet composition is influential on dosage-form characteristics. The objective of this study was to investigate the effect of different types of fillers and percentage on the physical properties of orally disintegrating tablets by using amlodipine as the model drug. Blank orally disintegrating tablets containing different fillers, namely, Sorbolac 400, Granulac 200, and CombiLac with different percentages, were prepared using the wet granulation method and were evaluated based on weight variation, hardness, thickness, friability, and disintegration time. Formulation 5 that consists of 25% Granulac 200 showed the optimal result among all formulations with the fastest disintegration time (96.17 s Å} 18.40) and sufficient tablet hardness (4.59 kg Å} 0.70). Hence, formulation 5 was selected as the optimal formulation and incorporated with amlodipine. From this study, it can be concluded that excipients have an essential role in determining the physical properties of orally disintegrating tablets.
    Matched MeSH terms: Drug Compounding
  14. Wan Omar WH, Sarbon NM
    J Food Sci Technol, 2016 Nov;53(11):3928-3938.
    PMID: 28035148 DOI: 10.1007/s13197-016-2379-5
    The aim of this study is to investigate the functional and antioxidant properties of chicken skin gelatin hydrolysate (CSGH) as affected by the drying method used in the preparation of gelatin (freeze-dried and vacuum dried). CSGH obtained from freeze-dried gelatin showed better functional properties such as emulsifying activity index (EAI), water holding and oil binding capacity at different pH compared to CSGH produced from vacuum dried gelatin. Meanwhile, the CSGH of the vacuum dried gelatin exhibited a better emulsifying stability index (ESI), foaming capacity and stability. CSGH from freeze-dried gelatin showed better antioxidant, DPPH radical scavenging and metal chelating activity.
    Matched MeSH terms: Drug Compounding
  15. Veronica N, Heng PWS, Liew CV
    Expert Opin Drug Deliv, 2023 Jan;20(1):115-130.
    PMID: 36503355 DOI: 10.1080/17425247.2023.2158183
    INTRODUCTION: As a nature-derived polymer with swelling and gelling properties, alginate has found wide biopharma-relevant applications. However, there is comparatively limited attention on alginate in tablet formulations. Therefore, this review aimed to provide an overview of the applications of alginate in solid dosage form formulations.

    AREAS COVERED: This review outlines the role of alginate for oral sustained release formulations. For better insights into its application in drug delivery, the mechanisms of drug release from alginate matrices are discussed alongside the alginate inherent properties and drug properties. Specifically, the influence of alginate properties and formulation components on the resultant alginate gel and subsequent drug release is reviewed. Modifications of the alginate to improve its properties in modulating drug release are also discussed.

    EXPERT OPINION: Alginate-based matrix tablets is useful for sustaining drug release. As a nature-derived polymer, batch consistency and stability raise some concerns about employing alginate in formulations. Furthermore, the alginate gel properties can be affected by formulation components, pH of the dissolution environment and the tablet matrix micro-environment pH. Conscientious efforts are pivotal to addressing these formulation challenges to increase the utilization of alginate in oral solid dosage forms.

    Matched MeSH terms: Drug Compounding
  16. Kumar P, Chaudhary B, Jain V, Baboota S, Shivanandy P, Alharbi KS, et al.
    Curr Drug Deliv, 2023;20(9):1262-1274.
    PMID: 36380413 DOI: 10.2174/1567201820666221114113637
    Molecular pharmaceutics play a critical role in the drug delivery system, representing the direct interconnection of drug bioavailability with its molecular form. There is a diversity in the molecular structures by which it affects its properties, such as amorphous form, crystalline form, partialamorphous molecular dispersion, and disordered state. The active pharmaceutical ingredient (API) and the excipients utilized in the formulation process contain various divergent modes used in the formulation process. They include better formulations of any type to obtain good quality pharmaceutical products. This review reveals how the molecular states affect the API and are important in maintaining the quality of dosage forms. Furthermore, the physio-chemical properties of the components and various pharmaceutical approaches employed in the formulation of dosage forms are studied from the point of view of molecular pharmaceutics.
    Matched MeSH terms: Drug Compounding
  17. Hezaveh H, Muhamad II, Noshadi I, Shu Fen L, Ngadi N
    J Microencapsul, 2012;29(4):368-79.
    PMID: 22309480 DOI: 10.3109/02652048.2011.651501
    We studied a model system of controlled drug release using beta-carotene and κ-carrageenan/NaCMC hydrogel as a drug and a device, respectively. Different concentrations of genipin were added to crosslink the beta-carotene loaded beads by using the dripping method. Results have shown that the cross-linked beads possess lower swelling ability in all pH conditions (pH 1.2 and 7.4), and swelling ratio decreases with increasing genipin concentration. Microstructure study shows that cross-linking has enhanced the stability and structure of the beads network. Determination of diffusion coefficient for the release of encapsulated beta-carotene indicates less diffusivity when beads are cross-linked. Swelling models using adaptive neuro fuzzy show that using genipin as a cross-linker in the kC/NaCMC hydrogels affects the transport mechanism. The model shows very good agreement with the experimental data that indicates that applying ANFIS modelling is an accurate, rapid and simple way to model in such a case for controlled release applications.
    Matched MeSH terms: Drug Compounding/methods*
  18. Aziz HA, Tan YT, Peh KK
    AAPS PharmSciTech, 2012 Mar;13(1):35-45.
    PMID: 22101965 DOI: 10.1208/s12249-011-9707-x
    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.
    Matched MeSH terms: Drug Compounding/methods*
  19. Tamilvanan S, Kumar BA, Senthilkumar SR, Baskar R, Sekharan TR
    AAPS PharmSciTech, 2010 Jun;11(2):904-9.
    PMID: 20496017 DOI: 10.1208/s12249-010-9455-3
    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze-thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze-thaw cycling. After storing the emulsion at 4 degrees C, 25 degrees C, and 37 degrees C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37 degrees C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.
    Matched MeSH terms: Drug Compounding/methods
  20. Zeeshan F, Bukhari NI
    AAPS PharmSciTech, 2010 Jun;11(2):910-6.
    PMID: 20496016 DOI: 10.1208/s12249-010-9456-2
    Modified-release multiple-unit tablets of loratadine and pseudoephedrine hydrochloride with different release profiles were prepared from the immediate-release pellets comprising the above two drugs and prolonged-release pellets containing only pseudoephedrine hydrochloride. The immediate-release pellets containing pseudoephedrine hydrochloride alone or in combination with loratadine were prepared using extrusion-spheronization method. The pellets of pseudoephedrine hydrochloride were coated to prolong the drug release up to 12 h. Both immediate- and prolonged-release pellets were filled into hard gelatin capsule and also compressed into tablets using inert tabletting granules of microcrystalline cellulose Ceolus KG-801. The in vitro drug dissolution study conducted using high-performance liquid chromatography method showed that both multiple-unit capsules and multiple-unit tablets released loratadine completely within a time period of 2 h, whereas the immediate-release portion of pseudoephedrine hydrochloride was liberated completely within the first 10 min of dissolution study. On the other hand, the release of pseudoephedrine hydrochloride from the prolonged release coated pellets was prolonged up to 12 hr and followed zero-order release kinetic. The drug dissolution profiles of multiple-unit tablets and multiple-unit capsules were found to be closely similar, indicating that the integrity of pellets remained unaffected during the compression process. Moreover, the friability, hardness, and disintegration time of multiple-unit tablets were found to be within BP specifications. In conclusion, modified-release pellet-based tablet system for the delivery of loratadine and pseudoephedrine hydrochloride was successfully developed and evaluated.
    Matched MeSH terms: Drug Compounding/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links