Displaying publications 21 - 40 of 138 in total

Abstract:
Sort:
  1. Shimul IM, Moshikur RM, Nabila FH, Moniruzzaman M, Goto M
    Food Chem, 2023 Dec 15;429:136911.
    PMID: 37478610 DOI: 10.1016/j.foodchem.2023.136911
    Flavonoids have diverse beneficial roles that potentiate their application as nutraceutical agents in nutritional supplements and as natural antimicrobial agents in food preservation. To address poor solubility and bioactivity issues, we developed water-soluble micellar formulations loaded with single and multiple flavonoids using the biocompatible surface-active ionic liquid choline oleate. The food preservation performance was investigated using luteolin, naringenin, and quercetin as model bioactive compounds. The micellar formulations formed spherical micelles with particle sizes of <150 nm and exhibited high aqueous solubility (>5.15 mg/mL). Co-delivery of multiple flavonoids (luteolin, naringenin, and quercetin in LNQ-MF) resulted in 84.85% antioxidant activity at 100 μg/mL. The effects on Staphylococcus aureus and Salmonella enterica were synergistic with fractional inhibitory concentration indices of 0.87 and 0.71, respectively. LNQ-MF hindered the growth of S. aureus in milk (0.83-0.89 log scale) compared to the control. Co-delivered encapsulated flavonoids are a promising alternative to chemical preservatives.
    Matched MeSH terms: Flavonoids/chemistry
  2. Shafaei A, Sultan Khan MS, F A Aisha A, Abdul Majid AM, Hamdan MR, Mordi MN, et al.
    Molecules, 2016 Nov 09;21(11).
    PMID: 27834876
    This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action based on structure-activity relationships and molecular docking. The in vitro ACE inhibition activity relied on determining hippuric acid (HA) formation from ACE-specific substrate (hippuryl-histidyl-leucine (HHL)) by the action of ACE enzyme. A High Performance Liquid Chromatography method combined with UV detection was developed and validated for measurement the concentration of produced HA. The chelation ability of OS extract and its reference compounds was evaluated by tetramethylmurexide reagent. Furthermore, molecular docking study was performed by LeadIT-FlexX: BioSolveIT's LeadIT program. OS ethanolic extract (OS-E) exhibited highest inhibition and lowest IC50 value (45.77 ± 1.17 µg/mL) against ACE compared to the other extracts. Among the tested reference compounds, EUP with IC50 15.35 ± 4.49 µg/mL had highest inhibition against ACE and binding ability with Zn (II) (56.03% ± 1.26%) compared to RA, TMF and SIN. Molecular docking studies also confirmed that flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. In this study, we have demonstrated that changes in flavonoids active core affect their capacity to inhibit ACE. Moreover, we showed that ACE inhibition activity of flavonoids compounds is directly related to their ability to bind with zinc ion in the active site of ACE enzyme. It was also revealed that OS extract contained high amount of flavonoids other than RA, TMF, SIN and EUP. As such, application of OS extract is useful as inhibitors of ACE.
    Matched MeSH terms: Flavonoids/chemistry*
  3. Seyedi SS, Shukri M, Hassandarvish P, Oo A, Shankar EM, Abubakar S, et al.
    Sci Rep, 2016 Apr 13;6:24027.
    PMID: 27071308 DOI: 10.1038/srep24027
    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya infection in humans. Despite the widespread distribution of CHIKV, no antiviral medication or vaccine is available against this virus. Therefore, it is crucial to find an effective compound to combat CHIKV. We aimed to predict the possible interactions between non-structural protein 3 (nsP) of CHIKV as one of the most important viral elements in CHIKV intracellular replication and 3 potential flavonoids using a computational approach. The 3-dimensional structure of nsP3 was retrieved from the Protein Data Bank, prepared and, using AutoDock Vina, docked with baicalin, naringenin and quercetagetin as ligands. The first-rated ligand with the strongest binding affinity towards the targeted protein was determined based on the minimum binding energy. Further analysis was conducted to identify both the active site of the protein that reacts with the tested ligands and all of the existing intermolecular bonds. Compared to the other ligands, baicalin was identified as the most potential inhibitor of viral activity by showing the best binding affinity (-9.8 kcal/mol). Baicalin can be considered a good candidate for further evaluation as a potentially efficient antiviral against CHIKV.
    Matched MeSH terms: Flavonoids/chemistry
  4. Sarian MN, Ahmed QU, Mat So'ad SZ, Alhassan AM, Murugesu S, Perumal V, et al.
    Biomed Res Int, 2017;2017:8386065.
    PMID: 29318154 DOI: 10.1155/2017/8386065
    The best described pharmacological property of flavonoids is their capacity to act as potent antioxidant that has been reported to play an important role in the alleviation of diabetes mellitus. Flavonoids biochemical properties are structure dependent; however, they are yet to be thoroughly understood. Hence, the main aim of this work was to investigate the antioxidant and antidiabetic properties of some structurally related flavonoids to identify key positions responsible, their correlation, and the effect of methylation and acetylation on the same properties. Antioxidant potential was evaluated through dot blot, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS+ radical scavenging, ferric reducing antioxidant power (FRAP), and xanthine oxidase inhibitory (XOI) assays. Antidiabetic effect was investigated through α-glucosidase and dipeptidyl peptidase-4 (DPP-4) assays. Results showed that the total number and the configuration of hydroxyl groups played an important role in regulating antioxidant and antidiabetic properties in scavenging DPPH radical, ABTS+ radical, and FRAP assays and improved both α-glucosidase and DPP-4 activities. Presence of C-2-C-3 double bond and C-4 ketonic group are two essential structural features in the bioactivity of flavonoids especially for antidiabetic property. Methylation and acetylation of hydroxyl groups were found to diminish the in vitro antioxidant and antidiabetic properties of the flavonoids.
    Matched MeSH terms: Flavonoids/chemistry*
  5. Sani IM, Iqbal S, Chan KW, Ismail M
    Molecules, 2012 Jun 19;17(6):7584-94.
    PMID: 22713349 DOI: 10.3390/molecules17067584
    The influence of both acidic and basic hydrolysis on the yield, total phenolic content and antioxidative capacity of methanolic extract of germinated brown rice (GBR) was studied. Total phenolic content (TPC), total flavonoid content (TFC), 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation scavenging, and ferric reducing antioxidant power (FRAP) tests were used for the measurement of antioxidant ability. There was a significant difference p < 0.05) in the TPC and DPPH radical scavenging assay results when comparing neutral with acidic and basic catalysed hydrolysis. The yield of the crude extract was slightly higher in acidic hydrolysis than in basic hydrolysis p > 0.05). The TPC and TFC were highest in acidic hydrolysis. A significant correlation was observed between ABTS radical cation scavenging and FRAP. The antioxidant activity measured using DPPH radical scavenging assay showed high activity in acidic hydrolysis, while the ABTS radical cationscavenging activity and FRAP showed the highest values in basic hydrolysis. The samples were further evaluated using HPLC to determine the individual phenolic concentrations in different hydrolytic media contributing to the antioxidant effects. This study revealed that acidic and basic hydrolysis can improve the yield, phenolic content, and antioxidant activity of germinated brown rice.
    Matched MeSH terms: Flavonoids/chemistry*
  6. Samad MA, Hashim SH, Simarani K, Yaacob JS
    Molecules, 2016 Mar 26;21(4):419.
    PMID: 27023514 DOI: 10.3390/molecules21040419
    Phoenix dactylifera or date palm fruits are reported to contain natural compounds that exhibit antioxidant and antibacterial properties. This research aimed to study the effect of fruit chilling at 4 °C for 8 weeks, extract storage at -20 °C for 5 weeks, and extraction solvents (methanol or acetone) on total phenolic content (TPC), antioxidant activity and antibacterial properties of Saudi Arabian P. dactylifera cv Mabroom, Safawi and Ajwa, as well as Iranian P. dactylifera cv Mariami. The storage stability of total anthocyanin content (TAC) was also evaluated, before and after storing the extracts at -20 °C and 4 °C respectively, for 5 weeks. Mariami had the highest TAC (3.18 ± 1.40 mg cyd 3-glu/100 g DW) while Mabroom had the lowest TAC (0.54 ± 0.15 mg cyd 3-glu/100 g DW). The TAC of all extracts increased after storage. The chilling of date palm fruits for 8 weeks prior to solvent extraction elevated the TPC of all date fruit extracts, except for methanolic extracts of Mabroom and Mariami. All IC50 values of all cultivars decreased after the fruit chilling treatment. Methanol was a better solvent compared to acetone for the extraction of phenolic compounds in dates. The TPC of all cultivars extracts decreased after 5 weeks of extract storage. IC50 values of all cultivars extracts increased after extract storage except for the methanolic extracts of Safawi and Ajwa. Different cultivars exhibited different antibacterial properties. Only the methanolic extract of Ajwa exhibited antibacterial activity against all four bacteria tested: Staphylococcus aureus, Bacillus cereus, Serratia marcescens and Escherichia coli. These results could be useful to the nutraceutical and pharmaceutical industries in the development of natural compound-based products.
    Matched MeSH terms: Flavonoids/chemistry
  7. Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S
    Biomed Res Int, 2017;2017:7526291.
    PMID: 29226147 DOI: 10.1155/2017/7526291
    Aim: This study investigated the antifungal properties of aqueous extracts obtained from indigenous plants that grow spontaneously in the Northern Sahara of Algeria. The activities of these plants in controlling two fungal species that belong to Fusarium genus were evaluated in an in vitro assay.

    Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.

    Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.

    Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.

    Matched MeSH terms: Flavonoids/chemistry
  8. Saleem H, Zengin G, Ahmad I, Lee JTB, Htar TT, Mahomoodally FM, et al.
    J Pharm Biomed Anal, 2019 Jun 05;170:132-138.
    PMID: 30921647 DOI: 10.1016/j.jpba.2019.03.027
    The current research work was conducted in order to probe into the biochemical and toxicological characterisation of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (Choisy.) aerial parts. Biological fingerprints were assessed for in vitro antioxidant, key enzyme inhibitory and cytotoxicity potential. Total bioactive contents were determined spectrophotometrically and the secondary metabolite components of methanol extract was assessed by UHPLC mass spectrometric analysis. The antioxidant capabilities were evaluated via six different in vitro antioxidant assays namely DPPH, ABTS (free radical scavenging), FRAP, CUPRAC (reducing antioxidant power), phosphomolybdenum (total antioxidant capacity) and ferrous chelating activity. Inhibition potential against key enzymes urease, α-glucosidase and cholinesterases were also determined. Methanol extract exhibited higher phenolic (24.01 mg GAE/g extract) as well as flavonoid (41.51 mg QE/g extract) contents. Phytochemical profiling of methanol extract identified a total of twenty secondary metabolites and the major compounds belonged to flavonoids, phenolics and alkaloid derivatives. The findings of antioxidant assays revealed the methanol extract to exhibit stronger antioxidant (except phosphomolybdenum) activities. Similarly, the methanol extract showed highest butyrylcholinesterase and urease inhibition. The DCM extract was most active for phosphomolybdenum and α-glucosidase inhibition assays. Moreover, both extracts exhibited significant cytotoxic potential against five (MCF-7, MDA-MB-231, CaSki, DU-145, and SW-480) human carcinoma cell lines with half maximal inhibitory concentration values of 22.09 to 257.2 μg/mL. Results from the present study highlighted the potential of B. glabra aerial extracts to be further explored in an endeavour to discover novel phytotherapeutics as well as functional ingredients.
    Matched MeSH terms: Flavonoids/chemistry
  9. Salahuddin MAH, Ismail A, Kassim NK, Hamid M, Ali MSM
    Food Chem, 2020 Nov 30;331:127240.
    PMID: 32585546 DOI: 10.1016/j.foodchem.2020.127240
    The present study focused on the phytochemical profiling along with evaluation of in vitro antioxidant, α-glucosidase and α-amylase inhibitory activities of various crudes and fractions obtained from Lepisanthes fruticosa (Roxb) Leenh fruit. Ethanolic seed crude extract exhibited the strongest radical scavenging, β-carotene bleaching activity, α-glucosidase inhibition and the highest total phenolic content (TPC). Column chromatography afforded various fractions with fraction M4 being the most potent due to the strongest radical scavenging, β-carotene bleaching, α-glucosidase inhibition and greatest amount of TPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of ethanolic seed crude extract and fraction M4 showed the presence of various phytochemicals with antioxidant and antidiabetic properties, which include mostly flavonoids and tannins. The results may suggest that the ethanolic crude seed extract and its fraction could be an excellent source of bioactive phytochemicals with antioxidant and antidiabetic potential.
    Matched MeSH terms: Flavonoids/chemistry
  10. Sabandar CW, Jalil J, Ahmat N, Aladdin NA
    Phytochemistry, 2017 Feb;134:6-25.
    PMID: 27889244 DOI: 10.1016/j.phytochem.2016.11.010
    The genus Dillenia is comprised of about 100 species of evergreen and deciduous trees or shrubs of disjunct distribution in the seasonal tropics of Madagascar through South and South East Asia, Malaysia, North Australia, and Fiji. Species from this genus have been widely used in medicinal folklore to treat cancers, wounds, jaundice, fever, cough, diabetes mellitus, and diarrhea as well as hair tonics. The plants of the genus also produce edible fruits and are cultivated as ornamental plants. Flavonoids, triterpenoids, and miscellaneous compounds have been identified in the genus. Their extracts and pure compounds have been reported for their antimicrobial, anti-inflammatory, cytotoxic, antidiabetes, antioxidant, antidiarrheal, and antiprotozoal activities. Mucilage from their fruits is used in drug formulations.
    Matched MeSH terms: Flavonoids/chemistry
  11. Rullah K, Mohd Aluwi MF, Yamin BM, Abdul Bahari MN, Wei LS, Ahmad S, et al.
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3826-34.
    PMID: 25027933 DOI: 10.1016/j.bmcl.2014.06.061
    The discovery of potent inhibitors of prostaglandin E2 (PGE2) synthesis in recent years has been proven to be an important game changer in pharmaceutical industry. It is known that excessive production of PGE2 triggers a vast array of biological signals and physiological events that contributes to inflammatory diseases such as rheumatoid arthritis, atherosclerosis, cancer, and pain. In this Letter, we report the synthesis of a series of minor prenylated chalcones and flavonoids which was found to be significantly active in suppressing the PGE2 production secreted by lipopolysaccharide-induced mouse macrophage cells (RAW 264.7). Among the compounds tested, 14b showed a dose-response inhibition of PGE2 production with an IC50 value of 2.1 μM. The suppression upon PGE2 secretion was not due to cell death since 14b did not reduce the cell viability in close proximity to the PGE2 inhibition concentration. The obtained atomic coordinates for the single-crystal XRD of 14b was then applied in the docking simulation to determine the potential important binding interactions with murine COX-2 and mPGES-1 putative binding sites.
    Matched MeSH terms: Flavonoids/chemistry
  12. Razab R, Abdul-Aziz A
    Nat Prod Commun, 2010 Mar;5(3):441-5.
    PMID: 20420325
    Plants that contain high amounts of polyphenolic compounds are potential candidates for natural antioxidant sources. Studies are on going in the search for new sources of antioxidants. Not much data are available on the antioxidant capacity of tropical herbs. With this in mind, 19 commonly consumed Malaysian herbs were analyzed for their polyphenolic content and antioxidant activities. A majority of these plants have never been studied before with regards to their polyphenolic content and antioxidant activities. The shoots of Anacardium occidentale, the shoots and fruits of Barringtonia racemosa, Pithecellobium jiringa and Parkia speciosa had high polyphenolic contents (> 150 microg gallic acid equivalents/mg dried plant) and antioxidant activities when measured using the ferric reducing antioxidant power (FRAP) (>1.2 mM) and Trolox equivalent antioxidant capacity (TEAC) assays (>2.4 mM). A strong correlation was observed between the two antioxidant assays (FRAP vs TEAC) implying that the plants could both scavenge free radicals and reduce oxidants. There was also a strong correlation between the antioxidant activities and polyphenolic content suggesting the observed antioxidant activities were contributed mainly by the polyphenolics in the plants.
    Matched MeSH terms: Flavonoids/chemistry*
  13. Ravishankar D, Salamah M, Akimbaev A, Williams HF, Albadawi DAI, Vaiyapuri R, et al.
    Sci Rep, 2018 Jun 22;8(1):9528.
    PMID: 29934595 DOI: 10.1038/s41598-018-27809-z
    Flavonoids exert innumerable beneficial effects on cardiovascular health including the reduction of platelet activation, and thereby, thrombosis. Hence, flavonoids are deemed to be a molecular template for the design of novel therapeutic agents for various diseases including thrombotic conditions. However, the structure-activity relationships of flavonoids with platelets is not fully understood. Therefore, this study aims to advance the current knowledge on structure-activity relationships of flavonoids through a systematic analysis of structurally-related flavones. Here, we investigated a panel of 16 synthetic flavones containing hydroxy or methoxy groups at C-7,8 positions on the A-ring, with a phenyl group or its bioisosteres as the B-ring, along with their thio analogues possessing a sulfur molecule at the 4th carbon position of the C-ring. The antiplatelet efficacies of these compounds were analysed using human isolated platelets upon activation with cross-linked collagen-related peptide by optical aggregometry. The results demonstrate that the hydroxyl groups in flavonoids are important for optimum platelet inhibitory activities. In addition, the 4-C=O and B ring phenyl groups are less critical for the antiplatelet activity of these flavonoids. This structure-activity relationship of flavonoids with the modulation of platelet function may guide the design, optimisation and development of flavonoid scaffolds as antiplatelet agents.
    Matched MeSH terms: Flavonoids/chemistry*
  14. Ramli NS, Ismail P, Rahmat A
    ScientificWorldJournal, 2014;2014:964731.
    PMID: 25379555 DOI: 10.1155/2014/964731
    The aim of this study was to examine the effects of extraction methods on antioxidant capacities of red dragon fruit peel and flesh. Antioxidant capacities were measured using ethylenebenzothiozoline-6-sulfonic acid (ABTS) radical cation assay and ferric reducing antioxidant power assay (FRAP). Total phenolic content (TPC) was determined using Folin-Ciocalteu reagent while quantitative determination of total flavonoid content (TFC) was conducted using aluminium trichloride colorimetric method. Betacyanin content (BC) was measured by spectrophotometer. Red dragon fruit was extracted using conventional (CV) and ultrasonic-assisted extraction (UE) technique to determine the most efficient way of extracting its antioxidant components. Results indicated that UE increased TFC, reduced the extraction yield, BC, and TPC, but exhibited the strongest scavenging activity for the peel of red dragon fruit. In contrast, UE reduced BC, TFC, and scavenging activity but increased the yield for the flesh. Nonetheless, UE slightly increases TPC in flesh. Scavenging activity and reducing power were highly correlated with phenolic and flavonoid compounds. Conversely, the scavenging activity and reducing power were weakly correlated with betacyanin content. This work gives scientific evidences for the consideration of the type of extraction techniques for the peel and flesh of red dragon fruit in applied research and food industry.
    Matched MeSH terms: Flavonoids/chemistry
  15. Rajudin E, Ahmad F, Sirat HM, Arbain D, Aboul-Enein HY
    Nat Prod Res, 2010 Mar;24(4):387-90.
    PMID: 20221945 DOI: 10.1080/14786410903421826
    Seven flavonoid compounds have been isolated from the aerial parts of tiger's betel (Piper porphyrophyllum), which were identified as 5,7-dimethoxyflavone, 4',5,7-trimethoxy-flavone, 3',4',5,7-tetramethoxyflavone, 4'-hydroxy-3',5,7-trimethoxyflavone, 5-hydroxy-3',4',7-trimethoxyflavone, 4',5-dihydroxy-3',7-dimethoxyflavone and 5-hydroxy-7-methoxyflavanone. The identification of all compounds was achieved by physical properties and spectroscopically. These data were also confirmed by comparison with previously reported spectral data. Flavonoid compounds with high content in P. porphyrophyllum can probably be used as a chemical marker for this Piper species.
    Matched MeSH terms: Flavonoids/chemistry
  16. Rahmani M, Leng KW, Ismail HB, Hin TY, Sukari MA, Ali AM, et al.
    Nat Prod Res, 2004 Feb;18(1):85-8.
    PMID: 14974620
    A new flavonoid, dihydroglychalcone-A, was isolated from the leaves extract of Glycosmis chlorosperma in addition to two known sulphur-containing amides, dambullin and gerambullin. The structure of the new compound was assigned as 2'-hydroxy-4,6'-dimethoxy-3',4'-(2",2"-dimethylpyrano)dihydrochalcone. The extract of the leaves was also found to exhibit antimicrobial and cytotoxic activities.
    Matched MeSH terms: Flavonoids/chemistry*
  17. Rahman MA, Ramli F, Karimian H, Dehghan F, Nordin N, Ali HM, et al.
    PLoS One, 2016;11(3):e0151466.
    PMID: 27019365 DOI: 10.1371/journal.pone.0151466
    Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3 analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5 μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell line T1074, with IC50 value of 32.5±0.5 μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.
    Matched MeSH terms: Flavonoids/chemistry
  18. Rad SK, Movafagh A
    Recent Pat Food Nutr Agric, 2021;12(1):45-57.
    PMID: 32807070 DOI: 10.2174/2212798411666200817120307
    BACKGROUND: Cinnamomum cassia (C. cassia) is an evergreen tree in China and Southern and Eastern Asia. In traditional medicine, cinnamon is widely used due to its many bioactivity effects.

    OBJECTIVE: The present novel study aims to evaluate and make a comparison of antioxidant and antiproliferative activities of different extractions of C. cassia bark using seven solvents having different polarities. Solvents polarity gradients start with the solvent of lower polarity, n-hexane, and end with water as the highest polar solvent. Among the extracts, acetone extract contains the highest phenolic and flavonoid contents; therefore, it is assessed for the ability to protect DNA from damage.

    METHODS: The extracts are evaluated for total phenolic, flavonoid contents and antioxidant activities, using FRAP, DPPH, superoxide, and hydroxyl and nitric oxide radicals scavenging assays. DNA damage protecting activity of the acetone extract is studied with the comet assay. Each of the extracts is studied for its antiproliferative effect against, MCF-7, MDA-MB-231(breast cancer), and HT29 (colon cancer), using MTT assay.

    RESULTS: The acetone extract exhibited the highest FRAP value, phenolic and flavonoids contents when compared to the other extracts and could protect 45% mouse fibroblast cell line (3T3-L1) from DNA damage at 30 μg/ml. The lowest IC50 value in DPPH, superoxide, and hydroxyl radicals scavenging was noticed in the ethyl acetate extract. IC50 value obtained for the hexane extract was the lowest compared to the other extracts in scavenging nitric oxide radicals. The hexane extract showed the highest antiproliferative effect against cancer cells followed by the chloroform extract. The ethyl acetate extract inhibited the proliferation of only MCF-7 by IC50 of 100 μg/ml, while the other extracts exhibited no IC50 in all the cancer cells.

    CONCLUSION: C. cassia showed promising antioxidant and anticancer activities with significant DNA damage protecting effect.

    Matched MeSH terms: Flavonoids/chemistry
  19. Pillai MK, Young DJ, Bin Hj Abdul Majid HM
    Mini Rev Med Chem, 2018;18(14):1220-1232.
    PMID: 28969549 DOI: 10.2174/1389557517666171002154123
    The plant Alpinia officinarum of the ginger family originated in China and is used throughout South and South-East Asian countries to flavor food and as a traditional medicine to treat a variety of diseases. This review summarizes the biological, pharmacological and phytochemical properties of extracts and subsequently isolated compounds from A. officinarum. In vitro and in vivo studies of both extracts and pure compounds indicate a wide variety of potent bioactivities including antiinflammatory, antibacterial, antioxidant, antiobesity, anticancer, enzyme inhibitory and remarkable antiviral properties. The latter is particularly promising in the face of emerging, virulent respiratory diseases in Asia and the Middle East.
    Matched MeSH terms: Flavonoids/chemistry
  20. Pang CY, Mak JW, Ismail R, Ong CE
    Naunyn Schmiedebergs Arch Pharmacol, 2012 May;385(5):495-502.
    PMID: 22307090 DOI: 10.1007/s00210-012-0731-5
    The inhibitory effects of five flavonoids with distinct chemical classes (flavones [luteolin], flavonols [quercetin and quercitrin], and flavanones [hesperetin and hespiridin]) on cDNA-expressed CYP2C8 were investigated. CYP2C8 was co-expressed with NADPH-cytochrome P450 reductase in Escherichia coli and used to characterise potency and mechanism of these flavonoids on the isoform. Tolbutamide 4-methylhydroxylase, a high-performance liquid chromatography-based assay, was selected as marker activity for CYP2C8. Our results indicated that the flavonoids inhibited CYP2C8 with different potency. The order of inhibitory activities was quercetin > luteolin > hesperetin > hesperidin > quercitrin. All of these compounds however exhibited mechanism-based inhibition. A number of structural factors were found to be important for inhibition; these include the molecular shape (volume to surface ratio), the number of hydroxyl groups as well as glycosylation of the hydroxyl group. Quercetin was the most potent inhibitor among the flavonoids examined in this study, and our data suggest that it should be examined for potential pharmacokinetic drug interactions pertaining to CYP2C8 substrates in vivo.
    Matched MeSH terms: Flavonoids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links