Displaying publications 21 - 40 of 148 in total

Abstract:
Sort:
  1. Sreekantan, Srimala, Ahmad Fauzi Mohd Noor, Zainal Arifin Ahmad, Radzali Othman, West, Anthony, Sinclair, Derek
    MyJurnal
    Barium strontium titanate (Ba0.7Sr0.3TiO3) powder was processed at temperature 80 o C by reacting titania sol in aqueous solutions that contained BaCl2, SrCl2 and NaOH at atmospheric pressure.
    The structural characteristic of the powder and sintered pellet were studied using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) whereas the electrical characteristic was determined via Impedance Spectroscopy (IS) and LCR meter. The synthesized powder was found to have a tetragonal phase after heating at 1300 o C. XRD pattern also showed the presence of secondary phase BaTi2O5 (BT2). The SEM results shows the fine grain size was in the range of 0.2 Pm to 0.4 Pm whereas the large ones are approximately 0.8 Pm to 1.2 Pm The ac response of sample sintered at 1300 o C indicated that three electrically different regions. Element 1 can be assigned as a ferroelectric grain boundary region and it is actually BT2, element 2 as a ferroelectric bulk region and the third element is a conductive core which has a low resistance (200 :) and capacitance value.
    Matched MeSH terms: Heating
  2. Nazrin A, Sapuan SM, Zuhri MYM, Ilyas RA, Syafiq R, Sherwani SFK
    Front Chem, 2020;8:213.
    PMID: 32351928 DOI: 10.3389/fchem.2020.00213
    Synthetic plastics are severely detrimental to the environment because non-biodegradable plastics do not degrade for hundreds of years. Nowadays, these plastics are very commonly used for food packaging. To overcome this problem, food packaging materials should be substituted with "green" or environmentally friendly materials, normally in the form of natural fiber reinforced biopolymer composites. Thermoplastic starch (TPS), polylactic acid (PLA) and polybutylene succinate (PBS) were chosen for the substitution, because of their availability, biodegradability, and good food contact properties. Plasticizer (glycerol) was used to modify the starch, such as TPS under a heating condition, which improved its processability. TPS films are sensitive to moisture and their mechanical properties are generally not suitable for food packaging if used alone, while PLA and PBS have a low oxygen barrier but good mechanical properties and processability. In general, TPS, PLA, and PBS need to be modified for food packaging requirements. Natural fibers are often incorporated as reinforcements into TPS, PLA, and PBS to overcome their weaknesses. Natural fibers are normally used in the form of fibers, fillers, celluloses, and nanocelluloses, but the focus of this paper is on nanocellulose. Nanocellulose reinforced polymer composites demonstrate an improvement in mechanical, barrier, and thermal properties. The addition of compatibilizer as a coupling agent promotes a fine dispersion of nanocelluloses in polymer. Additionally, nanocellulose and TPS are also mixed with PLA and PBS because they are costly, despite having commendable properties. Starch and natural fibers are utilized as fillers because they are abundant, cheap and biodegradable.
    Matched MeSH terms: Heating
  3. Sri Asliza, M.A., Zaheruddin, K., Shahrizal, H.
    MyJurnal
    In this study, natural Hydroxyapatite (HA) was extracted from clean cow bone by treatment with NaOH and heating at high temperature before ground into fine powder. The HA powder were than mixed together with binder for several hours. Dense HA were formed in die steel mould by using uniaxially pressing method. Sample was sintered at different temperature 1150, 1200, 1250 and 1300°C for several hours. The phases of specimen were identified using X-ray diffraction (XRD). The mechanical properties were analyzed using three-point bending testing and the microstructure was observed by scanning electron microscopy. From XRD results, natural HA shows phase of pure HA up to 1250 o C and fracture strength results indicated that the mechanical properties of specimen increase as temperature increase. From microstructure observation using SEM, HA specimen shows initial stages of sintering process at temperature 1150°C and show changes in microstructure evolution as temperature increase up to 1300°C.
    Matched MeSH terms: Heating
  4. Dianawati D, Lim SF, Ooi YBH, Shah NP
    J Food Sci, 2017 Sep;82(9):2134-2141.
    PMID: 28843042 DOI: 10.1111/1750-3841.13820
    The aims of this study were to evaluate the effect of types of protein-based microcapsules and storage at various ambient temperatures on the survival of Lactobacillus acidophilus during exposure to simulated gastrointestinal tract and on the change in thermo-tolerance during heating treatment. The encapsulating materials were prepared using emulsions of protein (sodium caseinate, soy protein isolate, or pea protein), vegetable oil, and glucose, with maltodextrin was used as a wall material. The formulations were heated at 90 °C for 30 min to develop Maillard substances prior to being incorporated with L. acidophilus. The mixtures were then spray dried. The microspheres were stored at 25, 30, and 35 °C for 8 wk and examined every 4 wk. The addition of proteins as encapsulating materials demonstrated a significant protective effect (P < 0.05) as compared to the control sample. Sodium caseinate and soy protein isolate appeared more effective than pea protein in protecting the bacteria after spray drying and during the storage at different room temperatures. Storage at 35 °C resulted in a significant decrease in survival at end of storage period regardless the type of encapsulating materials. The addition of protein-based materials also enhanced the survival of L. acidophilus during exposure to simulated gastrointestinal condition as compared to the control. After spray drying and after 0th wk storage, casein, soy protein isolate, and pea protein-based formulations protected the bacteria during heat treatment. In fact, a significant decrease in thermal tolerance was inevitable after 2 wk of storage at 25 °C.
    Matched MeSH terms: Heating
  5. Ali G, Nisar J, Iqbal M, Shah A, Abbas M, Shah MR, et al.
    Waste Manag Res, 2019 Aug 13.
    PMID: 31405341 DOI: 10.1177/0734242X19865339
    Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin-1, 10°Cmin-1, 15°Cmin-1 and 20°Cmin-1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats-Redfern) and model free methods (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats-Redfern, Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman models were found in the ranges 105-148.48 kJmol-1, 99.41-140.52 kJmol-1, 103.67-149.15 kJmol-1 and 99.93-141.25 kJmol-1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.
    Matched MeSH terms: Heating
  6. Chua, L. S., Adnan, N. A., Abdul-Rahaman, N. L., Sarmidi, M. R.
    MyJurnal
    Honey is usually subjected to filtration and heating for bottling before commercialization. However, there is no standard procedure available for thermal treatment on honey. Honey is thermally heated at various temperature and duration based on individual experience to prolong the shelf life of honey in the market. The heating methods might decrease the biochemical components such as nutrients, enzymatic activities and vitamins to certain extent. In addition to water reduction, thermal treatment on sugar rich honey usually accompanied by the formation of 5-hydroxymethylfurfural (HMF). In the present study, the biochemical components in three commonly consumed honey in Malaysia, namely tualang, gelam and acacia honey were investigated before and after thermal treatment at 90oC for 30 min. The short period of heating time was found to degrade nutrients, enzymatic activities and water soluble vitamins in honey. The degradation of protein and enzyme via proteolytic digestion had attributed to the increase of free amino acids in honey. Based on the multivariate analysis, the most thermally affected biochemical components are crude fat, panthotenic acid (Vitamin B5) and diastase activity which explain for 86.4% of the total variance. The kinetic studies on the HMF formation revealed that the honey samples followed zero order kinetic model for the first 60 min of heating at 90oC. The findings indicate that the temperature and duration of heating during honey processing is essential to be investigated according to the honey origin. The initial biochemical composition of honey would affect the kinetic profile of HMF formation.
    Matched MeSH terms: Heating
  7. Yavari S, Malakahmad A, Sapari NB, Yavari S
    J Environ Manage, 2017 Feb 18;193:201-210.
    PMID: 28226259 DOI: 10.1016/j.jenvman.2017.02.035
    Imidazolinones are a family of herbicides that are used to control a broad range of weeds. Their high persistence and leaching potential make them probable risk to the ecosystems. In this study, biochar, the biomass-derived solid material, was produced from oil palm empty fruit bunches (EFB) and rice husk (RH) through pyrolysis process. Feedstock and pyrolysis variables can control biochar sorption capacity. Therefore, the present study attempts to evaluate effects of three pyrolysis variables (temperature, heating rate and retention time) on abilities of biochars for removal of imazapic and imazapyr herbicides from soil. Response surface methodology (RSM) was used for optimizing the variables to achieve maximum sorption performance of the biochars. Experimental data were interpreted accurately by quadratic models. Based on the results, sorption capacities of both biochars raised when temperature decreased to 300 °C, mainly because of increased biochars effective functionality in sorption of polar molecules. Heating rate of 3°C/min provided optimum conditions to maximize the sorption capacities of both biochars. Retention time of about 1 h and 3 h were found to be the best for EFB and RH biochars, respectively. EFB biochar was more efficient in removal of the herbicides, especially imazapyr due to its chemical composition and higher polarity index (0.42) rather than RH biochar (0.39). Besides, higher cation exchange capacity (CEC) values of EFB biochar (83.90 cmolc/kg) in comparison with RH biochar (70.73 cmolc/kg) represented its higher surface polarity effective in sorption of the polar herbicides.
    Matched MeSH terms: Heating
  8. Roslinda Shamsudin, Abdul Razak Daud, Muhammad Azmi Abdul Hamid, Saiful Rizam Shamsudin
    Sains Malaysiana, 2007;36:195-200.
    Nitridation behaviour of Al-Mg-Si alloys was studied as a function of temperature by means of thermogravimetry method. A reactive gas, N2-4%H2 at a rate of 10 ml/min was purged into the thermogravimetry analyser chamber. The Al alloys were heated from 25oC to 625oC at the heating rate of 15oC/min and then reduced to 3oC/min until it reached 1500oC. It was found that by varying the amount of Mg and Si in Al-Mg-Si alloys significantly influenced the growth of the composites. A differential thermogravimetric curve shows the Mg containing alloys experienced many steps of chemical reactions. This indicates that besides AlN presence as a major phase, other compounds also exist in the final product. The X-ray diffraction results confirmed the existence of oxide phases such as a-Al2O3, MgAl2O4 and MgO in addition to residual Si and Al metal. The presence of oxide compounds is believed to be due to the reaction between the alloying elements and residual oxygen gas left in the reaction atmosphere. It was also found that Si could play a role in promoting the weight gain of the composite produced. The heating rate has also a profound effect on the weight gain, whereby higher heating rate resulted in low yielded of AlN during the nitridation reaction of the Al-Mg-Si alloys.
    Matched MeSH terms: Heating
  9. Akanbi, T.O., Kamaruzaman, A.L., Abu Bakar, F., Sheikh Abdul Hamid, N., Radu, S., Abdul Manap, M.Y., et al.
    MyJurnal
    The activities of lipase produced by five lipases-producing thermophilic bacteria strains (SY1, SY5, SY6, SY7 and SY9) isolated from Selayang Hot Spring in the western part of Peninsular Malaysia were analyzed and compared. SY7 and SY9 had considerably higher lipolytic activities than those of SY1, SY5 and SY6. Thermostabilities of lipase produced by all strains were determined after heating at 80°C for 30 minutes. Strain SY7 retained the highest lipolytic activity of 77%, while others had infinitesimally low thermostability (retaining less than 34% of their original activity) at the same temperature and time. SY7 was chosen for further characterization because it showed exceptionally high lipase activity and thermostability. It was identified as belonging to Bacillus species by the conventional Gram-staining technique, Biochemical tests and Biolog Microstation system. By using 16S rRNA gene sequencing, strain SY7 generated the same expected PCR product with molecular weight of 1500 base pair. It displayed 98% sequence similarity to Bacillus cereus strain J-1 16S rRNA gene partial sequence with accession number: AY305275 and has been deposited in the database of Genbank.
    Matched MeSH terms: Heating
  10. Noranizan, M.A., Dzulkifly, M.H., Russly, A.R.
    MyJurnal
    Changes in the physicochemical properties of wheat, sago, tapioca and potato starches were studied
    after heating for 1 hour at 100oC, 110oC, and 120oC and for 2 hours at 120oC. These properties were characterised through the swelling behaviour of starch granules, amount of carbohydrate materials leached from the granules, starch paste retrogradation rate and gel strength. For all starches except wheat, the swelling ability, rate of retrogradation and gel strength decreased while solubility increased with increasing temperature and heating time. Wheat starch followed this pattern only when heated at 120oC for 1 and 2 hours. Gel strength correlated well with the ratio of amylose to amylopectin (R) in the leachate. To produce fried crackers with good expansion properties, the granule has to be sufficiently degraded so as to allow more amylopectin to be leached out to achieve R value of 0.25-0.5. This can be achieved by heating wheat starch at 120oC for 1 hour or longer.
    Matched MeSH terms: Heating
  11. Johari A, Mat R, Alias H, Hashim H, Hassim M, Zakaria Z, et al.
    Sains Malaysiana, 2014;43:103-109.
    The combustion characteristics of refuse derived fuel (RDF) in a fluidized bed have been studied. The gross heating value (GHv) of the RDF was 14.43 MJIkg with moisture content of 25% by weight. Parameters of interest for sustainable bed combustion were the fluidization number and primary air factor. The study was performed in a rectangular fluidized bed combustor with dimensions of 0.3 m in width, 0.7 m in length and 2 m in height. Sand with mean particle size of 0.34 mm was used as a fluidization medium. The sand bed height was at 0.3 m above the standpipes air distributor. The range of fluidization number under investigation was 5-7 II fin which 5 II newas found to be the optimum. The study was continued for the determination of the optimum primary air factor with the selected range of primary air factors being 0.6, 0.8, 1.0 and 12 in experiments conducted at 5 Unit The final results showed that the optimum primary air factor was at 0.8. An energy balance was also performed to determine the thermal efficiency of the combustion. It was concluded that the thermal efficiency depended on the bed temperature and the primary air factor being used.
    Matched MeSH terms: Heating
  12. Loy ACM, Gan DKW, Yusup S, Chin BLF, Lam MK, Shahbaz M, et al.
    Bioresour Technol, 2018 Aug;261:213-222.
    PMID: 29665455 DOI: 10.1016/j.biortech.2018.04.020
    The thermal degradation behaviour and kinetic parameter of non-catalytic and catalytic pyrolysis of rice husk (RH) using rice hull ash (RHA) as catalyst were investigated using thermogravimetric analysis at four different heating rates of 10, 20, 50 and 100 K/min. Four different iso conversional kinetic models such as Kissinger, Friedman, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) were applied in this study to calculate the activation energy (EA) and pre-exponential value (A) of the system. The EA of non-catalytic and catalytic pyrolysis was found to be in the range of 152-190 kJ/mol and 146-153 kJ/mol, respectively. The results showed that the catalytic pyrolysis of RH had resulted in a lower EA as compared to non-catalytic pyrolysis of RH and other biomass in literature. Furthermore, the high Gibb's free energy obtained in RH implied that it has the potential to serve as a source of bioenergy production.
    Matched MeSH terms: Heating
  13. Wan Fadzlina WM, Wan Mohd Nazaruddin WH, Rhendra Hardy MZ
    Malays J Med Sci, 2016 Mar;23(2):28-37.
    PMID: 27547112 MyJurnal
    Inadvertent perioperative hypothermia (IPH) is a common problem, despite advancements in a variety of warming systems. The use of a resistive heating blanket (RHB) is a common but costly approach to patient warming. We have introduced the use of a heat-band in our centre as a cost-effective alternative to the RHB for patient warming. The efficacy of the heat-band in preventing IPH during laparotomy for gynaecological surgeries was compared with that of the RHB.
    Matched MeSH terms: Heating
  14. M. Fahmi M. Yusof, Nornashriah A. Rashid, Reduan Abdullah
    MyJurnal
    The glow curve in TLD-100 was compared by applying long preheat time, short preheat time
    techniques and without preheat technique before the TLD readout. Fading effect of the TLD signal
    upon certain storage time with long preheat time (100°C, 10 minutes using the oven) and short
    preheat time techniques (100°C, 10 seconds using the reader) were also studied. 15 TLD-100 chips
    were used with 3 of the TLD chips were used for measuring background radiation. 12 TLD chips
    were annealed, irradiated, preheated long and short preheat time techniques) and analyzed. The TL
    signals output from TLD chips of without preheated were used as the control. Two sets of data were
    taken using TLD chips irradiated with 6 MV and 10 MV photon beams. TL signal output was
    recorded the highest for short preheat time, followed by long preheat time and no preheating. The
    TL signal loss upon certain storage time was also reduced when short preheat time technique was
    applied. By applying long preheat time technique the low temperature peak in the glow curve was
    completely removed for both energies. Whereas, TLD chips exposed to 6 MV and with short preheat
    time technique the low temperature peak did not disappear completely but decreased in intensity as
    compared to the control data by 19.80%, 37.69%, 48.19% and 100% at 24, 48, 72 and 96 hours
    after exposure prior to readout, respectively. Meanwhile, for 10 MV photon beam with short
    preheat time, the small peak intensity was reduced by 19.58% for readout at 24 hours after
    irradiation and 100% for 48,72 and 96 hours delayed time prior to readout. It was observed that
    the TLD-100 was highly dependent on preheat heating time before readout. Short preheat time
    technique was able to reduce post irradiation fading of TLD-100 dosimeters
    Matched MeSH terms: Heating
  15. Rahman, M.M., Nor, S.S.M., Rahman, H.Y.
    ASM Science Journal, 2011;5(1):11-18.
    MyJurnal
    Warm compaction is an advanced manufacturing technique which consists of two consecutive steps, i.e. powder compaction at above ambient temperature and sintering in a controlled environment. Due to the relative movement between the powder mass and die wall as well as sliding among powder particles, frictional force is generated during the compaction stage. Admixed lubricant is used during the compaction step in order to minimize friction and hence improve the uniformity of the density of distribution inside the component. However, during the sintering process, trapped lubricant is often found to be burnt out hence leaving pores or voids which result in the lower strength of the final products. Warm compaction was initiated in the nineties, however not much information has been published about the effects of lubrication on the quality of the components produced through this route. Therefore, this paper presents the outcome of an experimental investigation about the effects of lubrication on manufacturing near-net shape components through the warm compaction route. Iron powder ASC 100.29 was mixed mechanically with zinc stearate to prepare the feedstock. Mixing time, weight percentage of lubricant content and compaction temperature were varied during green compact generation while sintering temperature, heating rate and holding time were manipulated during sintering. The relative densities and strengths of the final products were investigated at every compaction as well as sintering parameter. The results revealed that lubrication could provide significant effects at the compaction temperature of 180ºC while no significant effect of lubrication was observed during sintering. The suitable lubricant content was found to be 0.4 wt% and mixing time was around 30 min and the sintering temperature was around 990ºC.
    Matched MeSH terms: Heating
  16. Khan AF, Sajjad W, Rahim NA
    Recent Pat Nanotechnol, 2016;10(1):77-82.
    PMID: 27018275
    BACKGROUND: It is well-known that multi-layer films with nanostructure can give novel properties by interfacial phenomenon and quantum confinement effects. Nanostructured multi-layer thin films are presently being analyzed for their vast applications in the area of optoelectronics technology particularly photovoltaics. Hereof, two dimensional thin films with nanostructure are of prime importance due to their structure dependent optical, electrical, and opto-electronic properties. It has been revealed that these films exhibit quantum confinement effects with band gap engineering. The main focus of the research is to evaluate the effect on structural and optical properties with number of layers.

    METHODS: Nanostructured SnO2-Ge multi-layer thin films were fabricated using electron beam evaporation and resistive heating techniques. Alternate layers of SnO2 and Ge were deposited on glass substrate at a substrate temperature of 300 °C in order to obtain uniform and homogeneous deposition. The substrate temperature of 300 °C has been determined to be effective for the deposition of these multi-layer films from our previous studies. The films were characterized by investigating their structural and optical properties. The structural properties of the as-deposited films were characterized by Rutherford Backscattering Spectroscopy (RBS) and Raman spectroscopy and optical properties by Ultra-Violet-Near infrared (UV-VIS-NIR) spectroscopy.

    RESULTS: RBS studies confirmed that the layer structure has been effectively formed. Raman spectroscopy results show that the peaks of both Ge and SnO2 shifts towards lower wavenumbers (in comparison with bulk Ge and SnO2, suggesting that the films consist of nanostructures and demonstrate quantum confinement effects. UV-VIS-NIR spectroscopy showed an increase in the band gap energy of Ge and SnO2 and shifting of transmittance curves toward higher wavelength by increasing the number of layers. The band gap lies in the range of 0.9 to 1.2 eV for Ge, while for SnO2, it lies between 1.7 to 2.1 eV.

    CONCLUSION: Analysis of results suggests that the nanostructured SnO2-Ge multi-layer thin film can work as heterojunction materials with quantum confinement effects. Accordingly, the present SnO2-Ge multi-layer films may be employed for photovoltaic applications. Few relevant patents to the topic have been reviewed and cited.

    Matched MeSH terms: Heating
  17. Shuanglin Song, Shugang Wang, Yuntao Liang, Xiaochen Li, Qi Lin
    Sains Malaysiana, 2017;46:2143-2148.
    The air supply velocity is an important factor affecting the spontaneous combustion of coal. The appropriate air velocity can not only provide the oxygen required for the oxidation reaction, but maintains the good heat storage environment. Therefore, it is necessary to study the influence of the actual air velocity in the pore space on the self-heating process of coal particles. This paper focuses on studying the real space piled up by spherical particles. CFD simulation software is used to establish the numerical model from pore scale. Good fitness of the simulation results with the existing results verifies the feasibility of the calculation method. Later, the calculation conditions are changed to calculate and analyze the velocity field and the temperature field for self-heating of some particles (the surface of the particles is at a certain temperature) and expound the effect of different air supply velocities on gathering and dissipating the heat.
    Matched MeSH terms: Heating
  18. Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, et al.
    Bioresour Technol, 2017 Jan;224:708-713.
    PMID: 27838316 DOI: 10.1016/j.biortech.2016.10.090
    The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin-1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol-1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol-1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol-1 and 168 to 172kJmol-1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus.
    Matched MeSH terms: Heating
  19. Jahadi M, Khosravi-Darani K, Ehsani MR, Mozafari MR, Saboury AA, Pourhosseini PS
    J Food Sci Technol, 2015 Apr;52(4):2063-72.
    PMID: 25829586 DOI: 10.1007/s13197-013-1243-0
    The main objective of this study was to use heating method (HM) to prepare liposome without employing any chemical solvent or detergent. Plackett-Burman design (PBD) was applied for the screening of significant process variables including the lecithin proportion, the cholesterol/lecithin ratio, the pH of solution for liposome preparation, the enzyme/lecithin ratio, the stirring time, the process temperature, the speed of stirrer, the ratio of stirrer to the tank diameter, the application of homogenization, the method of adding enzyme and centrifugation conditions on the encapsulation efficiency (EE %) of liposome and the activity of liposomal Flavourzyme (LAPU(-1)) (P 
    Matched MeSH terms: Heating
  20. Yasin MH, Ishak A, Pop I
    Sci Rep, 2015;5:17848.
    PMID: 26647651 DOI: 10.1038/srep17848
    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.
    Matched MeSH terms: Heating
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links