Displaying publications 21 - 40 of 897 in total

Abstract:
Sort:
  1. Bahrudin NN, Nawi MA, Zainal Z
    Int J Biol Macromol, 2020 Dec 15;165(Pt B):2462-2474.
    PMID: 33736271 DOI: 10.1016/j.ijbiomac.2020.10.148
    The removal of methyl orange (MO) dye has been studied using TiO2/chitosan-montmorillonite (TiO2/Cs-MT) bilayer photocatalyst which also functions as an adsorbent. The dye removal experiments were conducted in the dark and under UV-Vis light irradiation via adsorption and photocatalysis-adsorption processes, respectively. The adsorption modelings were employed on the dark experimental data and compared with the immobilized and suspended Cs-Mt counterparts. It was found that the bilayer photocatalyst closely followed the adsorption properties of immobilized Cs-Mt which obeyed the pseudo-second-order kinetic and film diffusion models. Fluorescent analysis revealed that the charge separation was enhanced in the presence of Cs-Mt as a sub-layer of TiO2. Under light irradiation, the photocatalytic activity of TiO2/Cs-MT corresponded to its adsorption counterpart trend and was optimized at pH 6.5 and 20 mg L-1 of MO dye solution. High removal efficiency and synergism of MO by TiO2/Cs-MT over TiO2 single layer were observed throughout the 10 cycles of application due to contribution of adsorption of Cs-Mt sub-layer and photocatalysis by TiO2 top layer.
    Matched MeSH terms: Kinetics
  2. Hamid SBA, Chowdhury ZZ, Zain SM
    Materials (Basel), 2014 Apr 09;7(4):2815-2832.
    PMID: 28788595 DOI: 10.3390/ma7042815
    This study examines the feasibility of catalytically pretreated biochar derived from the dried exocarp or fruit peel of mangostene with Group I alkali metal hydroxide (KOH). The pretreated char was activated in the presence of carbon dioxide gas flow at high temperature to upgrade its physiochemical properties for the removal of copper, Cu(II) cations in single solute system. The effect of three independent variables, including temperature, agitation time and concentration, on sorption performance were carried out. Reaction kinetics parameters were determined by using linear regression analysis of the pseudo first, pseudo second, Elovich and intra-particle diffusion models. The regression co-efficient, R² values were best for the pseudo second order kinetic model for all the concentration ranges under investigation. This implied that Cu(II) cations were adsorbed mainly by chemical interactions with the surface active sites of the activated biochar. Langmuir, Freundlich and Temkin isotherm models were used to interpret the equilibrium data at different temperature. Thermodynamic studies revealed that the sorption process was spontaneous and endothermic. The surface area of the activated sample was 367.10 m²/g, whereas before base activation, it was only 1.22 m²/g. The results elucidated that the base pretreatment was efficient enough to yield porous carbon with an enlarged surface area, which can successfully eliminate Cu(II) cations from waste water.
    Matched MeSH terms: Kinetics
  3. Han F, Hessen AS, Amari A, Elboughdiri N, Zahmatkesh S
    Environ Res, 2024 Mar 15;245:117972.
    PMID: 38141913 DOI: 10.1016/j.envres.2023.117972
    Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.
    Matched MeSH terms: Kinetics
  4. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Kinetics
  5. Kamil RN, Yusup S
    Bioresour Technol, 2010 Aug;101(15):5877-84.
    PMID: 20304636 DOI: 10.1016/j.biortech.2010.02.084
    A mathematical model describing chemical kinetics of transesterification of palm-based methyl esters with trimethylolpropane has been developed. The model was developed by utilizing nonlinear regression method, which is an efficient and powerful way to determine rate constants for both forward and reverse reactions. A comparison with previous study which excludes the reverse reactions was made. The model was based on the reverse mechanism of transesterification reactions and describes concentration changes of trimethylolpropane, monoesters and diesters production. The developed model was validated against data from the literature. The reaction rate constants were determined using MATLAB version 7.2 and the ratios of rate constants obtained were well in agreement with those reported in the literature. A good correlation between model simulations and experimental data was observed. It was proven that both methods were able to predict the rate constants with plausible accuracy.
    Matched MeSH terms: Kinetics
  6. Rashidi NA, Bokhari A, Yusup S
    Environ Sci Pollut Res Int, 2021 Jul;28(26):33967-33979.
    PMID: 32333352 DOI: 10.1007/s11356-020-08823-z
    The volumetric adsorption kinetics of carbon dioxide (CO2) onto the synthesized palm kernel shell activated carbon via single-stage CO2 activation and commercial Norit® activated carbon were carried out at an initial pressure of approximately 1 bar at three different temperatures of 25, 50, and 100 °C. The experimental kinetics data were modelled by using the Lagergren's pseudo-first-order model and pseudo-second-order model. Comparing these two, the non-linear pseudo-second-order kinetics model presented a better fit towards CO2 adsorption for both adsorbents, owing to its closer coefficient of determination (R2) to unity, irrespective of the adsorption temperature. In addition, kinetics analysis showed that the corresponding kinetics coefficient (rate of adsorption) of both activated carbons increased with respect to adsorption temperature, and thereby, it indicated higher mobility of CO2 adsorbates at an elevated temperature. Nevertheless, CO2 adsorption capacity of both activated carbons reduced at elevated temperatures, which signified exothermic and physical adsorption (physisorption) behaviour. Besides, process exothermicity of both carbonaceous adsorbents can be corroborated through activation energy (Ea) value, which was deduced from the Arrhenius plot. Ea values that were in range of 32-38 kJ/mol validated exothermic adsorption at low pressure and temperature range of 25-100 °C. To gain an insight into the CO2 adsorption process, experimental data were fitted to intra-particle diffusion model and Boyd's diffusion model, and findings revealed an involvement of both film diffusion and intra-particle diffusion during CO2 adsorption process onto the synthesized activated carbon and commercial activated carbon.
    Matched MeSH terms: Kinetics
  7. Hussain A, Maitra J, Saifi A, Ahmed S, Ahmed J, Shrestha NK, et al.
    Environ Res, 2024 Mar 01;244:117952.
    PMID: 38113992 DOI: 10.1016/j.envres.2023.117952
    In developing countries like India, an economically viable and ecologically approachable strategy is required to safeguard the drinking water. Excessive fluoride intake through drinking water can lead to dental fluorosis, skeletal fluorosis, or both. The present study has been under with an objective to investigate the feasibility of using cellulose derived from coconut fiber as an adsorbent under varying pH conditions for fluoride elimination from water. The assessment of equilibrium concentration of metal ions using adsorption isotherms is an integral part of the study. This present finding indicates the considerable effect of variation of adsorbent dosages on the fluoride removal efficiency under constant temperature conditions of 25 ± 2 °C with a contact period of 24 h. It is pertinent to mention that maximum adsorption of 88% has been observed with a pH value of 6 with 6 h time duration with fluoride dosage of 50 mg/L. The equilibrium concentration dwindled to 0.4 mg/L at fluoride concentration of 20 mg/L. The Langmuir model designates the adsorption capacity value of 2.15 mg/L with initial fluoride concentration of 0.21 mg/g with R2 value of 0.660. Similarly, the adsorption capacity using Freundlich isotherms is found to be 0.58 L/g and 0.59 L/g with fluoride concentration of 1.84 mg/L and 2.15 mg/L respectively. The results from the present study confirm that coconut fiber possesses appropriate sorption capabilities of fluoride ion but is a pH dependent phenomenon. The outcomes of the study indicate the possible use of cellulose extracted from waste coconut fiber as a low-cost fluoride adsorbent. The present study can be well implemented on real scale systems as it will be beneficial economically as well as environmentally.
    Matched MeSH terms: Kinetics
  8. Shahla S, Ngoh GC, Yusoff R
    Bioresour Technol, 2012 Jan;104:1-5.
    PMID: 22154586 DOI: 10.1016/j.biortech.2011.11.010
    In this paper, the kinetics of palm oil ethanolysis with various models have been investigated in a temperature range of 25-55 °C. The highest yield was achieved when the conversion to ethyl ester was 97.5±0.5% in the stated temperature range, using ethanol:oil molar ratio of 12:1, and 1.0 wt.% sodium ethoxide. The level of conformity of the reaction with reversible second order, irreversible second order and first order kinetic models were evaluated by means of the R(2) values of the linear curves. The ethanolysis showed the best conformity with irreversible second order kinetic model with 92-98% level of confidence. The reaction rate constants were within 0.018-0.088 dm(3)/mol min and the activation energy of the reaction was 42.36 kJ/mol.
    Matched MeSH terms: Kinetics
  9. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    J Environ Sci (China), 2018 Oct;72:140-152.
    PMID: 30244741 DOI: 10.1016/j.jes.2017.12.022
    The toxicity and kinetic uptake potential of zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials into the red bean (Vigna angularis) plant were investigated. The results obtained revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant. However, TiO2 had a positive effect on plant physiology, resulting in promoted growth. The results of biochemical experiments implied that ZnO, through the generation of oxidative stress, significantly reduced the chlorophyll content, carotenoids and activity of stress-controlling enzymes. On the contrary, no negative biochemical impact was observed in plants treated with TiO2. For the kinetic uptake and transport study, we designed two exposure systems in which ZnO and TiO2 were exposed to red bean seedlings individually or in a mixture approach. The results showed that in single metal oxide treatments, the uptake and transport increased with increasing exposure period from one week to three weeks. However, in the metal oxide co-exposure treatment, due to complexation and competition among the particles, the uptake and transport were remarkably decreased. This suggested that the kinetic transport pattern of the metal oxide mixtures varied compared to those of its individual constituents.
    Matched MeSH terms: Kinetics
  10. Rothan HA, Mohamed Z, Suhaeb AM, Rahman NA, Yusof R
    OMICS, 2013 Nov;17(11):560-7.
    PMID: 24044366 DOI: 10.1089/omi.2013.0056
    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
    Matched MeSH terms: Kinetics
  11. Abdollahi Y, Abdullah AH, Zainal Z, Yusof NA
    Int J Mol Sci, 2012;13(1):302-15.
    PMID: 22312253 DOI: 10.3390/ijms13010302
    Photocatalytic degradation of p-cresol was carried out using ZnO under UV irradiation. The amount of photocatalyst, concentration of p-cresol and pH were studied as variables. The residual concentration and mineralization of p-cresol was monitored using a UV-visible spectrophotometer and total organic carbon (TOC) analyzer, respectively. The intermediates were detected by ultra high pressure liquid chromatography (UPLC). The highest photodegradation of p-cresol was observed at 2.5 g/L of ZnO and 100 ppm of p-cresol. P-cresol photocatalytic degradation was favorable in the pH range of 6-9. The detected intermediates were 4-hydroxy-benzaldehyde and 4-methyl-1,2-benzodiol. TOC studies show that 93% of total organic carbon was removed from solution during irradiation time. Reusability shows no significant reduction in photocatalytic performance in photodegrading p-cresol.
    Matched MeSH terms: Kinetics
  12. Zahari NK, Sheikh Ab Hamid S, Yusof N
    Cell Tissue Bank, 2015 Mar;16(1):55-63.
    PMID: 24647964 DOI: 10.1007/s10561-014-9438-9
    Preserved human amniotic membrane either air dried or glycerol preserved has been used effectively to treat superficial and partial thickness wounds without leaving any obvious hypertrophic scar. The preserved amnion, sterilised by ionising radiation, is known as an effective barrier for heat, fluid and protein loss while adheres nicely on wound. Air drying slightly reduced the oxygen transmission rate (OTR) of the amnion and the value significantly dropped after 15 kGy (p < 0.05). Glycerol preservation significantly reduced (p < 0.05) the OTR indicating less oxygen transmitted through the well structured cells of the amnion. Increase in the OTR with the increasing radiation doses up to 35 kGy possibly due to direct effects of radiation that resulted in large intercellular gaps. Both preservation methods significantly increased (p < 0.05) the water vapour transmission rate (WVTR). However, the low WVTR in the air dried amnion at 15 and 25 kGy was postulated due to cross-linking of collagen. Changes in the biophysical properties can be linked to direct and indirect effects of radiation on collagen bundles. The radiation dose of 25 kGy caused no adverse effect on biophysical properties hence it is still acceptable to sterilize both the air dried and the glycerol preserved amnions.
    Matched MeSH terms: Kinetics
  13. Haron MJ, Yunus WM
    PMID: 11460327
    A cerium-loaded poly(hydroxamic acid) chelating ion exchanger was used for fluoride ion removal from aqueous solution. The resin was effective in decreasing the fluoride concentration from 5 mM down to 0.001 mM in acidic pH between 3 and 6. The sorption followed a Langmuir model with a maximum capacity of 0.5 mmol/g. The removal is accomplished by an anion exchange mechanism. The rate constant for the sorption was found to be 9.6 x 10(-2) min-1. A column test shows that the fluoride ion was retained on the column until breakthrough point and the fluoride sorbed in the column can be eluted with 0.1 M NaOH. The column can be reused after being condition with hydrochloric acid at pH 4. The resin was tested and found to be effective for removal of fluoride from actual industrial wastewater.
    Matched MeSH terms: Kinetics
  14. Altowayti WAH, Allozy HGA, Shahir S, Goh PS, Yunus MAM
    Environ Sci Pollut Res Int, 2019 Oct;26(28):28737-28748.
    PMID: 31376124 DOI: 10.1007/s11356-019-06059-0
    Several parts of the world have been facing the problem of nitrite and nitrate contamination in ground and surface water. The acute toxicity of nitrite has been shown to be 10-fold higher than that of nitrate. In the present study, aminated silica carbon nanotube (ASCNT) was synthesised and tested for nitrite removal. The synergistic effects rendered by both amine and silica in ASCNT have significantly improved the nitrite removal efficiency. The IEP increased from 2.91 for pristine carbon nanotube (CNT) to 8.15 for ASCNT, and the surface area also increased from 178.86 to 548.21 m2 g-1. These properties have promoted ASCNT a novel adsorbent to remove nitrite. At optimum conditions of 700 ppm of nitrite concentration at pH 7 and 5 h of contact with 15 mg of adsorbent, the ASCNT achieved the maximal loading capacity of 396 mg/g (85% nitrite removal). The removal data of nitrite onto ASCNT fitted the Langmuir isotherm model better than the Freundlich isotherm model with the highest regression value of 0.98415, and also, the nonlinear analysis of kinetics data showed that the removal of nitrite followed pseudo-second-order kinetic. The positive values of both ΔS° and ΔH° suggested an endothermic reaction and an increase in randomness at the solid-liquid interface. The negative ΔG° values indicated a spontaneous adsorption process. The ASCNT was characterised using FESEM-EDX and FTIR, and the results obtained confirmed the removal of nitrite. Based on the findings, ASCNT can be considered as a novel and promising candidate for the removal of nitrite ions from wastewater.
    Matched MeSH terms: Kinetics
  15. Sam MS, Lintang HO, Sanagi MM, Lee SL, Yuliati L
    PMID: 24503155 DOI: 10.1016/j.saa.2013.12.113
    A metal-free mesoporous carbon nitride (MCN) was investigated for the first time as an adsorbent for N-nitrosopyrrolidine (NPYR), which is one of the nitrosamine pollutants. Under the same condition, the adsorption capability of the MCN was found to be higher than that of the MCM-41. Since the adsorption isotherm was consistent with Langmuir and Freundlich model equations, it was suggested that the adsorption of NPYR molecules on the MCN occurred in the form of mono-molecular layer on the heterogeneous surface sites. It was proposed that MCN with suitable adsorption sites was beneficial for the adsorption of NPYR. The evidence on the interaction between the NPYR molecules and the MCN was supported by fluorescence spectroscopy. Two excitation wavelengths owing to the terminal N-C and N=C groups were used to monitor the interactions between the emission sites of the MCN and the NPYR molecules. It was confirmed that the intensity of the emission sites was quenched almost linearly with the concentration of NPYR. This result obviously suggested that the MCN would be applicable as a fluorescence sensor for detection of the NPYR molecules. From the Stern-Volmer plot, the quenching rate constant of terminal N-C groups was determined to be ca. two times higher than that of the N=C groups on MCN, suggesting that the terminal N-C groups on MCN would be the favoured sites interacted with the NPYR. Since initial concentration can be easily recovered, the interactions of NPYR on MCN were weak and might only involve electrostatic interactions.
    Matched MeSH terms: Kinetics
  16. Wan Ngah WS, Hanafiah MA, Yong SS
    Colloids Surf B Biointerfaces, 2008 Aug 1;65(1):18-24.
    PMID: 18359205 DOI: 10.1016/j.colsurfb.2008.02.007
    The adsorption of humic acid on crosslinked chitosan-epichlorohydrin (chitosan-ECH) beads was investigated. Chitosan-ECH beads were characterized by Fourier transform infrared spectroscopy (FTIR), surface area and pore size analyses, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out and optimum humic acid adsorption on chitosan-ECH beads occurred at pH 6.0, agitation rate of 300 rpm and contact time of 50 min. Adsorption equilibrium isotherms were analyzed by Langmuir and Freundlich models. Freundlich model was found to show the best fit for experimental data while the maximum adsorption capacity determined from Langmuir model was 44.84 mg g(-1). The adsorption of humic acid on chitosan-ECH beads was best described with pseudo-first-order kinetic model. For desorption study, more than 60% of humic acid could be desorbed from the adsorbent using 1.0M HCl for 180 min.
    Matched MeSH terms: Kinetics
  17. Tao Y, Han Y, Liu W, Peng L, Wang Y, Kadam S, et al.
    Ultrason Sonochem, 2019 Apr;52:193-204.
    PMID: 30514598 DOI: 10.1016/j.ultsonch.2018.11.018
    In this work, sonication (20-kHz) was conducted to assist the biosorption of phenolics from blueberry pomace extracts by brewery waste yeast biomass. The adsorption capacity of yeast increased markedly under ultrasonic fields. After sonication at 394.2 W/L and 40 °C for 120 min, the adsorption capacity was increased by 62.7% compared with that under reciprocating shaking. An artificial neural network was used to model and visualize the effects of different parameters on yeast biosorption capacity. Both biosorption time and acoustic energy density had positive influences on yeast biosorption capacity, whereas no clear influence of temperature on biosorption process was observed. Regarding the mechanism of ultrasound-enhanced biosorption process, the amino and carboxyl groups in yeast were considered to be associated with the yeast biosorption property. Meanwhile, ultrasound promoted the decline of the structure order of yeast cells induced by phenolic uptake. The interactions between yeast cells and phenolics were also affected by the structures of phenolics. Moreover, the mass transfer process was simulated by a surface diffusional model considering the ultrasound-induced yeast cell disruption. The modeling results showed that the external mass transfer coefficient in liquid phase and the surface diffusion coefficient under sonication at 394.2 W/L and 40 °C were 128.5% and 74.3% higher than that under reciprocating shaking, respectively.
    Matched MeSH terms: Kinetics
  18. Hassan S, Duclaux L, Lévêque JM, Reinert L, Farooq A, Yasin T
    J Environ Manage, 2014 Nov 1;144:108-17.
    PMID: 24929502 DOI: 10.1016/j.jenvman.2014.05.005
    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.
    Matched MeSH terms: Kinetics
  19. Tan NH, Fung SY, Yap YH
    PMID: 21983189 DOI: 10.1016/j.cbpb.2011.09.009
    A thrombin-like enzyme (termed albolabrase) was isolated in purified form from the venom of Cryptelytrops albolabris (white-lipped tree viper) using high performance anion ion exchange and gel filtration chromatography. The molecular mass of albolabrase was 33.7 kDa as determined by SDS-PAGE and 35.8 kDa as determined by Superose gel filtration chromatography. The N-terminal sequence was determined to be VVGGDECNINE which is homologous to many snake venom thrombin-like enzymes. Albolabrase exhibits both arginine ester hydrolase and arginine amidase activities and the enzyme is fastidious towards tripeptide chromogenic anilide substrates. The fibrinogen clotting activity was optimum at 3mg/mL bovine fibrinogen, and showed distinct species differences in the following decreasing order: bovine fibrinogen>dog fibrinogen≈human fibrinogen>goat fibrinogen. The enzyme failed to clot both rabbit and cat fibrinogens. Reversed-phase HPLC analysis on the breakdown products of fibrinogenolytic action of albolabrase indicated that the enzyme belongs to the AB class of snake venom thrombin-like enzyme. In the indirect ELISA, IgG anti-albolabrase reacted extensively with most crotalid venoms, except with Tropidolaemus wagleri and Calloselasma rhodostoma venoms. The double sandwich ELISA, however, showed that anti-albolabrase reacted strongly only with venoms from the Trimeresurus complex, and that the results support the proposed new taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Kinetics
  20. Hiew BYZ, Lee LY, Lai KC, Gan S, Thangalazhy-Gopakumar S, Pan GT, et al.
    Environ Res, 2019 01;168:241-253.
    PMID: 30321737 DOI: 10.1016/j.envres.2018.09.030
    Pharmaceutical residues are emerging pollutants in the aquatic environment and their removal by conventional wastewater treatment methods has proven to be ineffective. This research aimed to develop a three-dimensional reduced graphene oxide aerogel (rGOA) for the removal of diclofenac in aqueous solution. The preparation of rGOA involved facile self-assembly of graphene oxide under a reductive environment of L-ascorbic acid. Characterisation of rGOA was performed by Fourier transform infrared, scanning electron microscope, transmission electron microscopy, nitrogen adsorption-desorption, Raman spectroscopy and X-ray diffraction. The developed rGOA had a measured density of 20.39 ± 5.28 mg/cm3, specific surface area of 132.19 m2/g, cumulative pore volume of 0.5388 cm3/g and point of zero charge of 6.3. A study on the simultaneous interactions of independent factors by response surface methodology suggested dosage and initial concentration as the dominant parameters influencing the adsorption of diclofenac. The highest diclofenac adsorption capacity (596.71 mg/g) was achieved at the optimum conditions of 0.25 g/L dosage, 325 mg/L initial concentration, 200 rpm shaking speed and 30 °C temperature. The adsorption equilibrium data were best fitted to the Freundlich model with correlation coefficient (R2) varying from 0.9500 to 0.9802. The adsorption kinetic data were best correlated to the pseudo-first-order model with R2 ranging from 0.8467 to 0.9621. Thermodynamic analysis showed that the process was spontaneous (∆G = - 7.19 to - 0.48 kJ/mol) and exothermic (∆H = - 12.82 to - 2.17 kJ/mol). This research concluded that rGOA is a very promising adsorbent for the remediation of water polluted by diclofenac.
    Matched MeSH terms: Kinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links