Displaying publications 21 - 40 of 436 in total

Abstract:
Sort:
  1. Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E
    Nanoscale Res Lett, 2013;8(1):474.
    PMID: 24225302 DOI: 10.1186/1556-276X-8-474
    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose.
    Matched MeSH terms: Metal Nanoparticles
  2. Al-Hinai KH, Benkara Mohd N, Rozullyah Zulkepely N, Md Nor R, Mohd Amin Y, Bradley DA
    Appl Radiat Isot, 2013 Dec;82:126-9.
    PMID: 23978507 DOI: 10.1016/j.apradiso.2013.07.013
    We describe two example pilot efforts to help define new thermoluminescent dosimeter media. The first concerns ZnS:Mn nanophosphors, prepared by chemical precipitation using zinc and sodium sulfate, doped with manganese sulfate at concentrations varying from 1 to 3mol. The second concerns chemical vapor deposited diamond, produced as a thin film or as amorphous carbon on a single-crystal silicon substrate, each deposited under the same conditions, use being made of the hot filament-chemical vapor deposition (HFCVD) technique. The gas concentrations used were 1% CH4 in 99% H2 and 25% CH4 in 75% H2. Characterization of formations used FESEM, XRD and EDX. The nanophosphors consisted of particles of sizes in the range 85-150nm, the thermoluminescence (TL)-based radiation detection medium giving rise to a single peaked glow curve of maximum yield at a temperature of 250°C at a heating rate of 5°C/s. The TL response increased linearly with radiation dose, ZnS doped to 2mol of Mn being found the most sensitive. Regarding chemical vapor deposited (CVD) carbon, inappreciable TL was found for the resultant ball-like amorphous carbon films, graphite, and the silicon substrate, whereas CVD diamond films showed a promising degree of linearity with dose. For both the ZnS and diamond samples, TL signal fading was appreciable, being some 40% per day for ZnS and>50% per day for CVD films even under storage in the dark at room temperature, making it apparent that there is need to adjust parameters such as the size of nanoparticles.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure
  3. Low KF, Zain ZM, Yean CY
    Biosens Bioelectron, 2017 Jan 15;87:256-263.
    PMID: 27567251 DOI: 10.1016/j.bios.2016.08.064
    A novel enzyme/nanoparticle-based DNA biosensing platform with dual colorimetric/electrochemical approach has been developed for the sequence-specific detection of the bacterium Vibrio cholerae, the causative agent of acute diarrheal disease in cholera. This assay platform exploits the use of shelf-stable and ready-to-use (shelf-ready) reagents to greatly simplify the bioanalysis procedures, allowing the assay platform to be more amenable to point-of-care applications. To assure maximum diagnosis reliability, an internal control (IC) capable of providing instant validation of results was incorporated into the assay. The microbial target, single-stranded DNA amplified with asymmetric PCR, was quantitatively detected via electrochemical stripping analysis of gold nanoparticle-loaded latex microspheres as a signal-amplified hybridization tag, while the incorporated IC was analyzed using a simplified horseradish peroxidase enzyme-based colorimetric scheme by simple visual observation of enzymatic color development. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 145 clinical isolate-spiked fecal specimens. The limits of detection were 0.5ng/ml of genomic DNA and 10 colony-forming units (CFU)/ml of bacterial cells with dynamic ranges of 0-100ng/ml (R(2)=0.992) and log10 (1-10(4) CFU/ml) (R(2)=0.9918), respectively. An accelerated stability test revealed that the assay reagents were stable at temperatures of 4-37°C, with an estimated ambient shelf life of 200 days. The versatility of the biosensing platform makes it easily adaptable for quantitative detection of other microbial pathogens.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  4. Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R
    AMB Express, 2017 Dec;7(1):41.
    PMID: 28205102 DOI: 10.1186/s13568-017-0339-8
    An earlier electrochemical mechanism of DNA detection was adapted and specified for the detection of Vibrio parahaemolyticus in real samples. The reader, based on a screen printed carbon electrode, was modified with polylactide-stabilized gold nanoparticles and methylene blue was employed as the redox indicator. Detection was assessed using a microprocessor to measure current response under controlled potential. The fabricated sensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0 × 10(-8)-2.0 × 10(-13) M with a detection limit of 2.16 pM. The relative standard deviation for 6 replications of differential pulse voltammetry (DPV) measurement of 0.2 µM complementary DNA was 4.33%. Additionally, cross-reactivity studies against various other food-borne pathogens showed a reliably sensitive detection of the target pathogen. Successful identification of Vibrio parahaemolyticus (spiked and unspiked) in fresh cockles, combined with its simplicity and portability demonstrate the potential of the device as a practical screening tool.
    Matched MeSH terms: Metal Nanoparticles
  5. Rahim MZA, Govender-Hondros G, Adeloju SB
    Talanta, 2018 Nov 01;189:418-428.
    PMID: 30086941 DOI: 10.1016/j.talanta.2018.06.041
    The development of free and total cholesterol nanobiosensors based on a single step electrochemical integration of gold nanoparticles (AuNPs), cholesterol oxidase (COx), cholesterol esterase (CE) and a mediator with polypyrrole (PPy) films is described. The incorporation of the various components in the PPy films was confirmed by chronopotentiometry, cyclic voltammetry (CV), scanning electron microscopy, energy dispersive X-ray analysis (SEM-EDX), and Fourier transformed infrared (FTIR) spectroscopy. The free cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx, nanobiosensor achieved a minimum detectable concentration of 5 μM, a linear concentration range of 5-25 μM and a sensitivity of 1.6 µA cm-2 µM-1 in 0.05 M phosphate buffer (pH 7.00). For the total cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx-CE, nanobiosensor which also involved the co-incorporation of cholesterol esterase (CE) with the other components, the achieved performances include a minimum detectable total cholesterol concentration of 25 μM, a broader linear concentration range of 25-170 μM and a lower sensitivity of 0.1 µA µM-1 cm-2. Owing to its high selectivity, the presence of common interferants did not affect the total cholesterol measurement with the PPy-NO3--Fe(CN)64--AuNPs-COx-CE nanobiosensor. Both nanobiosensors were successfully used for direct and indirect determination of total cholesterol in human blood serum samples.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  6. Low A, Bansal V
    Biomed Imaging Interv J, 2010 01 01;6(1):e9.
    PMID: 21611068 DOI: 10.2349/biij.6.1.e9
    Many papers have been written on the synthesis of gold nanoparticles but very few included pictures of the process, and none of them used video to show the whole process of synthesis. This paper records the process of synthesis of gold nanoparticles using video clips. Every process from cleaning of glassware, an important step in the synthesis of metallic nanoparticles, to the dialysis process is shown. It also includes the preparation of aqua regia and the actual synthesis of gold nanoparticles. In some papers, the dialysis process was omitted, but in this paper, it is included to complete the whole process as it is being used for purification.
    Matched MeSH terms: Metal Nanoparticles
  7. Mahmud AH, Salahuddin NM, Md Jani AM, Abu Bakar NF, Zainal Abidin SAS, Mohd Zain Z, et al.
    Food Chem, 2023 Jun 15;411:135493.
    PMID: 36689871 DOI: 10.1016/j.foodchem.2023.135493
    A voltammetric immunosensor was developed for detection of porcine serum albumin (PSA) to identify raw meat products adulterated with pork. A novel strategy to fabricate multiple individual nanoporous alumina (NPA) millirods (length, 5.0 mm; diameter, 1.0 mm) as the biorecognition platform is described. Each NPA millirod was covalently bioconjugated with anti-PSA capturing antibodies (α-PSAC). Following immunocapture, the PSA bound to the α-PSAC/NPA millirod bioconjugate were tagged with gold nanoparticles (AuNPs) functionalized with anti-PSA detection antibodies as the signaling probe. Subsequently, the AuNPs were voltammetrically analyzed to quantify the target PSA. The immunosensor exhibited 100 % specificity and high sensitivity to PSA with a limit of detection (LoD) of 50 (range, 0-1000) pg/mL (R2 = 0.9907). Real-world applicability was successfully validated using pork/beef adulterated mixtures with a LoD of 0.05 % (w/w). Overall, the detection performance of the proposed immunosensor was excellent and, thus, is suitable for surveillance of food safety and quality.
    Matched MeSH terms: Metal Nanoparticles*
  8. Ng NT, Kamaruddin AF, Wan Ibrahim WA, Sanagi MM, Abdul Keyon AS
    J Sep Sci, 2018 Jan;41(1):195-208.
    PMID: 28834218 DOI: 10.1002/jssc.201700689
    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels.
    Matched MeSH terms: Metal Nanoparticles
  9. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P, Lakshmipriya T, et al.
    Sci Rep, 2019 11 19;9(1):17013.
    PMID: 31745155 DOI: 10.1038/s41598-019-53573-9
    Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm-1 to 1650 cm-1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M-1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  10. Yu L, Lu M, Zhang W, Alarfaj AA, Hirad AH, Zhang H
    Microb Pathog, 2020 Apr;141:103960.
    PMID: 31953224 DOI: 10.1016/j.micpath.2019.103960
    BACKGROUND: Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) among the children and adults that results upper and lower respiratory tract infections.

    OBJECTIVE: This study was aimed to inspect the ameliorative action of A. chinensis synthesized ZnONPs against M. pneumoniae infected pneumonia mice model.

    MATERIALS AND METHODS: ZnO NPs was synthesized from Albizia chinensis bark extract and characterized by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), energy dispersive X-ray (EDX) and atomic force microscope (AFM) analyses. The antibacterial effectual of synthesized ZnONPs were examined against clinical pathogens. The pneumonia was induced to BALB/c mice via injecting the M. pneumoniae and treated with synthesized ZnONPs, followed by the total protein content, total cell counts and inflammatory mediators level was assessed in the BALF of experimental animals. The Histopathological investigation was done in the lung tissues of test animals.

    RESULTS: The outcomes of this work revealed that the formulated ZnONPs was quasi-spherical, radial and cylindrical; the size was identified as 116.5 ± 27.45 nm in diameter. The in vitro antimicrobial potential of formulated ZnO-NPs displayed noticeable inhibitory capacity against the tested fungal and bacterial strains. The administration of synthesized ZnO-NPs in MP infected mice model has significantly reduced the levels of total protein, inflammatory cells, inflammatory cytokines such as IL-1, IL-6, IL-8, tumour necrosis factor-alpha (TNF-a) and transforming growth factor (TGF). Besides, the histopathological examination of MP infected mice lung tissue showed the cellular arrangements were effectively retained after administration of synthesized ZnO-NPs.

    CONCLUSION: In conclusion, synthesized ZnO-NPs alleviate pneumonia progression via reducing the level of inflammatory cytokines and inflammatory cells in MP infected mice model.

    Matched MeSH terms: Metal Nanoparticles/therapeutic use; Metal Nanoparticles/chemistry*
  11. Yusoff N, Rameshkumar P, Mohamed Noor A, Huang NM
    Mikrochim Acta, 2018 04 03;185(4):246.
    PMID: 29616348 DOI: 10.1007/s00604-018-2782-x
    An amperometric sensor for L-Cys is described which consists of a glassy carbon electrode (GCE) that was modified with reduced graphene oxide placed in a Nafion film and decorated with palladium nanoparticles (PdNPs). The film was synthesized by a hydrothermal method. The PdNPs have an average diameter of about 10 nm and a spherical shape. The modified GCE gives a linear electro-oxidative response to L-Cys (typically at +0.6 V vs. SCE) within the 0.5 to 10 μM concentration range. Other figures of merit include a response time of less than 2 s, a 0.15 μM lower detection limit (at signal to noise ratio of 3), and an analytical sensitivity of 1.30 μA·μM-1·cm-2. The sensor displays selectivity over ascorbic acid, uric acid, dopamine, hydrogen peroxide, urea, and glucose. The modified GCE was applied to the determination of L-Cys in human urine samples and gave excellent recoveries. Graphical abstract Spherical palladium nanoparticles (PdNPs) on reduced graphene oxide-Nafion (rGO-Nf) films were synthesized using a hydrothermal method. This nanohybrid was used for modifying a glassy carbon electrode to develop a sensor electrode for detecting L-cysteine that has fast response (less than 2 s), low detection limit (0.15 μM), and good sensitivity (0.092 μA μM-1 cm-2).
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  12. Lee ST, Rahman R, Muthoosamy K, Mohamed NAH, Su X, Tayyab S, et al.
    Mikrochim Acta, 2019 01 09;186(2):81.
    PMID: 30627857 DOI: 10.1007/s00604-018-3194-7
    A fluorogenic probe has been developed for determination of telomerase activity using chimeric DNA-templated silver nanoclusters (AgNCs). The formation of AgNCs was investigated before (route A) and after (route B) telomerase elongation reaction. Both routes caused selective quenching of the yellow emission of the AgNCs (best measured at excitation/emission wavelength of 470/557 nm) in telomerase-positive samples. The quenching mechanism was studied using synthetically elongated DNA to mimic the telomerase-catalyzed elongation. The findings show that quenching is due to the formation of parallel G-quadruplexes with a -TTA- loop in the telomerase elongated products. The assay was validated using different cancer cell extracts, with intra- and interassay coefficients of variations of <9.8%. The limits of detection for MCF7, RPMI 2650 and HT29 cell lines are 15, 22 and 39 cells/μL. This represents a distinct improvement over the existing telomeric repeat amplification protocol (TRAP) assay in terms of time, sensitivity and cost. Graphical Abstract A method was developed using chimeric DNA-templated silver nanoclusters to detect telomerase activity directly in cell extracts. The sensitivity of this new method outperforms the traditional TRAP assay, and without the need for amplification.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  13. Nik Mansor NN, Leong TT, Safitri E, Futra D, Ahmad NS, Nasuruddin DN, et al.
    Sensors (Basel), 2018 Feb 26;18(3).
    PMID: 29495352 DOI: 10.3390/s18030686
    A tri-enzyme system consisting of choline kinase/choline oxidase/horseradish peroxidase was used in the rapid and specific determination of the biomarker for bacterial sepsis infection, secretory phospholipase Group 2-IIA (sPLA2-IIA). These enzymes were individually immobilized onto the acrylic microspheres via succinimide groups for the preparation of an electrochemical biosensor. The reaction of sPLA2-IIA with its substrate initiated a cascading enzymatic reaction in the tri-enzyme system that led to the final production of hydrogen peroxide, which presence was indicated by the redox characteristics of potassium ferricyanide, K₃Fe(CN)₆. An amperometric biosensor based on enzyme conjugated acrylic microspheres and gold nanoparticles composite coated onto a carbon-paste screen printed electrode (SPE) was fabricated and the current measurement was performed at a low potential of 0.20 V. This enzymatic biosensor gave a linear range 0.01-100 ng/mL (R² = 0.98304) with a detection limit recorded at 5 × 10-3 ng/mL towards sPLA2-IIA. Moreover, the biosensor showed good reproducibility (relative standard deviation (RSD) of 3.04% (n = 5). The biosensor response was reliable up to 25 days of storage at 4 °C. Analysis of human serum samples for sPLA2-IIA indicated that the biosensor has potential for rapid bacterial sepsis diagnosis in hospital emergency department.
    Matched MeSH terms: Metal Nanoparticles
  14. Md Sani ND, Ariffin EY, Sheryn W, Shamsuddin MA, Heng LY, Latip J, et al.
    Sensors (Basel), 2019 Nov 22;19(23).
    PMID: 31766637 DOI: 10.3390/s19235111
    A toxicity electrochemical DNA biosensor has been constructed for the detection of carcinogens using 24 base guanine DNA rich single stranded DNA, and methylene blue (MB) as the electroactive indicator. This amine terminated ssDNA was immobilized onto silica nanospheres and deposited on gold nanoparticle modified carbon-paste screen printed electrodes (SPEs). The modified SPE was initially exposed to a carcinogen, followed by immersion in methylene blue for an optimized duration. The biosensor response was measured using differential pulse voltammetry. The performance of the biosensor was identified on several anti-cancer compounds. The toxicity DNA biosensor demonstrated a linear response range to the cadmium chloride from 0.0005 ppm to 0.01 ppm (R2 = 0.928) with a limit of detection at 0.0004 ppm. The biosensor also exhibited its versatility to screen the carcinogenicity of potential anti-cancer compounds.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  15. Lah ZMANH, Ahmad SAA, Zaini MS, Kamarudin MA
    J Pharm Biomed Anal, 2019 Sep 10;174:608-617.
    PMID: 31265987 DOI: 10.1016/j.jpba.2019.06.024
    A facile electrochemical sandwich immunosensor for the detection of a breast cancer biomarker, the human epidermal growth factor receptor 2 (HER2), was designed, using lead sulfide quantum dots-conjugated secondary HER2 antibody (Ab2-PbS QDs) as a label. Using Ab2-PbS QDs in the development of electrochemical immunoassays leads to many advantages such as straightforward synthesis and well-defined stripping signal of Pb(II) through acid dissolution, which in turn yields better sensing performance for the sandwiched immunosensor. In the bioconjugation of PbS QDs, the available amine and hydroxyl groups from secondary anti-HER2 and capped PbS QDs were bound covalently together via carbonyldiimidazole (CDI) acting as a linker. In order to quantify the biomarker, SWV signal was obtained, where the Pb2+ ions after acid dissolution in HCl was detected. The plated mercury film SPCE was also detected in situ. Under optimal conditions, HER2 was detected in a linear range from 1-100 ng/mL with a limit of detection of 0.28 ng/mL. The measures of satisfactory recoveries were 91.3% to 104.3% for the spiked samples, displaying high selectivity. Therefore, this method can be applied to determine HER2 in human serum.
    Matched MeSH terms: Metal Nanoparticles
  16. Białobrzeska W, Dziąbowska K, Lisowska M, Mohtar MA, Muller P, Vojtesek B, et al.
    Biosensors (Basel), 2021 Jun 07;11(6).
    PMID: 34200338 DOI: 10.3390/bios11060184
    The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.
    Matched MeSH terms: Metal Nanoparticles
  17. Rashid JIA, Kannan V, Ahmad MH, Mon AA, Taufik S, Miskon A, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;120:111625.
    PMID: 33545813 DOI: 10.1016/j.msec.2020.111625
    Multidrug resistant Pseudomonas aeruginosa (P. aeruginosa) is known to be a problematic bacterium for being a major cause of opportunistic and nosocomial infections. In this study, reduced graphene oxide decorated with gold nanoparticles (AuNPs/rGO) was utilized as a new sensing material for a fast and direct electrochemical detection of pyocyanin as a biomarker of P. aeruginosa infections. Under optimal condition, the developed electrochemical pyocyanin sensor exhibited a good linear range for the determination of pyocyanin in phosphate-buffered saline (PBS), human saliva and urine at a clinically relevant concentration range of 1-100 μM, achieving a detection limit of 0.27 μM, 1.34 μM, and 2.3 μM, respectively. Our developed sensor demonstrated good selectivity towards pyocyanin in the presence of interfering molecule such as ascorbic acid, uric acid, NADH, glucose, and acetylsalicylic acid, which are commonly found in human fluids. Furthermore, the developed sensor was able to discriminate the signal with and without the presence of pyocyanin directly in P. aeruginosa culture. This proposed technique demonstrates its potential application in monitoring the presence of P. aeruginosa infection in patients.
    Matched MeSH terms: Metal Nanoparticles*
  18. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al.
    Lab Chip, 2016 Feb 7;16(3):611-21.
    PMID: 26759062 DOI: 10.1039/c5lc01388g
    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  19. Noroozi M, Zakaria A, Moksin MM, Wahab ZA
    Int J Mol Sci, 2012;13(8):10350-8.
    PMID: 22949865 DOI: 10.3390/ijms130810350
    The thermal effusivity of Al(2)O(3) and CuO nanofluids in different base fluids, i.e., deionized water, ethylene glycol and olive oil were investigated. The nanofluids, nanoparticles dispersed in base fluids; were prepared by mixing Al(2)O(3), CuO nanopowder and the base fluids using sonication with high-powered pulses to ensure a good uniform dispersion of nanoparticles in the base fluids. The morphology of the particles in the base fluids was investigated by transmission electron microscopy (TEM). In this study, a phase frequency scan of the front pyroelectric configuration technique, with a thermally thick PVDF pyroelectric sensor and sample, was used to measure the thermal effusivity of the prepared nanofluids. The experimental results of the thermal effusivity of the studied solvents (deionized water, ethylene glycol and olive oil) showed good agreement with literature values, and were reduced in the presence of nanoparticles. The thermal effusivity of the nanofluid was found to be particularly sensitive to its base fluid and the type of nanoparticles.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  20. Bapat RA, Chaubal TV, Joshi CP, Bapat PR, Choudhury H, Pandey M, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Oct 01;91:881-898.
    PMID: 30033323 DOI: 10.1016/j.msec.2018.05.069
    Oral cavity is a gateway to the entire body and protection of this gateway is a major goal in dentistry. Plaque biofilm is a major cause of majority of dental diseases and although various biomaterials have been applied for their cure, limitations pertaining to the material properties prevent achievement of desired outcomes. Nanoparticle applications have become useful tools for various dental applications in endodontics, periodontics, restorative dentistry, orthodontics and oral cancers. Off these, silver nanoparticles (AgNPs) have been used in medicine and dentistry due to its antimicrobial properties. AgNPs have been incorporated into biomaterials in order to prevent or reduce biofilm formation. Due to greater surface to volume ratio and small particle size, they possess excellent antimicrobial action without affecting the mechanical properties of the material. This unique property of AgNPs makes these materials as fillers of choice in different biomaterials whereby they play a vital role in improving the properties. This review aims to discuss the influence of addition of AgNPs to various biomaterials used in different dental applications.
    Matched MeSH terms: Metal Nanoparticles
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links