Displaying publications 21 - 40 of 70 in total

Abstract:
Sort:
  1. Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, et al.
    mBio, 2018 08 21;9(4).
    PMID: 30131362 DOI: 10.1128/mBio.01462-18
    Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
    Matched MeSH terms: Antimicrobial Cationic Peptides/pharmacology
  2. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res Int, 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
    Matched MeSH terms: Peptides/pharmacology*
  3. Agyei D, Ahmed I, Akram Z, Iqbal HM, Danquah MK
    Protein Pept Lett, 2017;24(2):94-101.
    PMID: 28017145 DOI: 10.2174/0929866523666161222150444
    Bioactive proteins and peptides are recognised as novel therapeutic molecules with varying biological properties for potential medical applications. Development of protein and peptidebased therapeutic products for human use is growing steadily as they continue to receive an increasing rate of approval by the United States Food and Drugs Administration (US FDA). In this short review, we describe the current status and methodologies involved in the synthesis of protein and peptide biopharmaceuticals with an emphasis on the drivers and restrains to their exploitation in the therapeutic products sector.
    Matched MeSH terms: Peptides/pharmacology
  4. Hussein FA, Chay SY, Ghanisma SBM, Zarei M, Auwal SM, Hamid AA, et al.
    J Dairy Sci, 2020 Mar;103(3):2053-2064.
    PMID: 31882211 DOI: 10.3168/jds.2019-17462
    We evaluated the acute (single-dose) and subacute (repeated-dose) oral toxicity of alcalase-hydrolyzed whey protein concentrate. Our acute study revealed no death or treatment-related complications, and the median lethal dose of whey protein concentrate hydrolysate was >2,500 mg/kg. In the subacute study, when the hydrolysate was fed at 3 different concentrations (200, 400, and 800 mg/kg), no groups showed toxicity changes compared with controls. Then, whey protein concentrate hydrolysate was orally administered to spontaneously hypertensive rats. Results revealed significant reductions in blood pressure in a dose-dependent manner, and dosing at 400 mg/kg led to significant blood pressure reduction (-47.8 mm Hg) compared with controls (blood pressure maintained) and the findings of previous work (-21 mm Hg). Eight peptides-RHPEYAVSVLLR, GGAPPAGRL, GPPLPRL, ELKPTPEGDL, VLSELPEP, DAQSAPLRVY, RDMPIQAF, and LEQVLPRD-were sequentially identified and characterized. Of the peptides, VLSELPEP and LEQVLPRD showed the most prominent in vitro angiotensin-I converting enzyme inhibition with half-maximal inhibitory concentrations of 0.049 and 0.043 mM, respectively. These findings establish strong evidence for the in vitro and in vivo potential of whey protein concentrate hydrolysate to act as a safe, natural functional food ingredient that exerts antihypertensive activity.
    Matched MeSH terms: Peptides/pharmacology
  5. Ravichandran G, Kumaresan V, Mahesh A, Dhayalan A, Arshad A, Arasu MV, et al.
    Int J Biol Macromol, 2018 Jan;106:1014-1022.
    PMID: 28837852 DOI: 10.1016/j.ijbiomac.2017.08.098
    Chitinases play a vital role during the pathogenic invasion and immunosuppression in various organisms including invertebrates and vertebrates. In this study, we have investigated the participation of MrChit-3 (Macrobrachium rosenbergii Chitinase-3) during host-pathogenic interaction in freshwater prawn, M. rosenbergii. Quantitative real-time PCR analysis showed that the expression of MrChit-3 was up-regulated during bacterial, viral and laminarin challenge. Moreover, to understand the antimicrobial role of the GH18 domain, a putative membrane-targeting antimicrobial peptide (MrVG) was identified from the GH18 domain region of the protein and it was chemically synthesized. Physico-chemical features of the GH18 derived antimicrobial peptide (AMP) was assessed by various in silico tools and the antimicrobial property of the peptide was confirmed from in vitro studies. The membrane targeting mechanism of the peptide was determined by flow cytometry (FACS) and scanning electron microscope (SEM) analysis. Interestingly, the peptide was able to inhibit the growth of a chitinolytic fungal pathogen, Aspergillus niger, which was isolated from the shells of M. rosenbergii. The toxicity studies such as hemolysis activity on human blood erythrocytes and cell viability assay with primary kidney cells, HEK293 of MrVG revealed that the peptide was not involved in inducing any toxicity.
    Matched MeSH terms: Antimicrobial Cationic Peptides/pharmacology*
  6. Jindal HM, Le CF, Mohd Yusof MY, Velayuthan RD, Lee VS, Zain SM, et al.
    PLoS One, 2015;10(6):e0128532.
    PMID: 26046345 DOI: 10.1371/journal.pone.0128532
    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.
    Matched MeSH terms: Peptides/pharmacology
  7. Manoharan S, Shuib AS, Abdullah N
    PMID: 28573254 DOI: 10.21010/ajtcam.v14i2.39
    BACKGROUND: The commercially available synthetic angiotensin-I-converting enzyme (ACE) inhibitors are known to exert negative side effects which have driven many research groups globally to discover the novel ACE inhibitors.

    METHOD: Literature search was performed within the PubMed, ScienceDirect.com and Google Scholar.

    RESULTS: The presence of proline at the C-terminal tripeptide of ACE inhibitor can competitively inhibit the ACE activity. The effects of other amino acids are less studied leading to difficulties in predicting potent peptide sequences. The broad specificity of the enzyme may be due to the dual active sites observed on the somatic ACE. The inhibitors may not necessarily competitively inhibit the enzyme which explains why some reported inhibitors do not have the common ACE inhibitor characteristics. Finally, the in vivo assay has to be carried out before the peptides as the antihypertensive agents can be claimed. The peptides must be absorbed into circulation without being degraded, which will affect their bioavailability and potency. Thus, peptides with strong in vitro IC50 values do not necessarily have the same effect in vivo and vice versa.

    CONCLUSION: The relationship between peptide amino acid sequence and inhibitory activity, in vivo studies of the active peptides and bioavailability must be studied before the peptides as antihypertensive agents can be claimed.

    Matched MeSH terms: Peptides/pharmacology*
  8. Shami AM, Philip K, Muniandy S
    BMC Complement Altern Med, 2013 Dec 16;13:360.
    PMID: 24330547 DOI: 10.1186/1472-6882-13-360
    BACKGROUND: A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture.

    METHODS: Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes.

    RESULTS: Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities.

    CONCLUSIONS: It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications.

    Matched MeSH terms: Peptides/pharmacology
  9. Salleh N, Ahmad VN
    BMC Complement Altern Med, 2013 Dec 14;13:359.
    PMID: 24330515 DOI: 10.1186/1472-6882-13-359
    BACKGROUND: Ficus deltoidea, is a perennial herb that is used to assist labor, firm the uterus post-delivery and to prevent postpartum bleeding. In view of its claimed uterotonic action, the mechanisms underlying plant's effect on uterine contraction were investigated.

    METHODS: Adult female SD rats were injected with 2 mg/kg 17β-oestradiol (E2) to synchronize their oestrous cycle. A day after injection, uteri were removed for in-vitro contraction studies. The dose dependent effect of Ficus deltoidea aqeous extract (FDA) on the tension produced by the isolated rat's uteri was determined. The effects of atropine (2×10(-8) M), atosiban (0.5 IU), THG113.31 (10 μM), oxodipine (0.25 mM), EDTA (1 mM), 2-amino-ethoxy-diphenylborate (2-APB) (40 mM) and thapsigargin (1 mM) on the maximum force of contraction (Emax) achieved following 2 mg/ml FDA administration were also investigated.

    RESULTS: FDA induced in-vitro contraction of the isolated rat's uteri in a dose-dependent manner. Administration of atropine, atosiban and THG113.31 reduced the Emax with atosiban having the greatest effect. The Emax was also reduced following oxodipine and EDTA administration. There was no significant change observed following 2-APB administration. Thapsigargin, however, augmented Emax.

    CONCLUSIONS: FDA-induced contraction of the isolated rat's uteri is mediated via multiple uterotonin receptors (muscarinic, oxytocin and prostaglandin F2α) and was dependent on the extracellular Ca2+. Contraction, however, was not dependent on the Ca2+ release from the internal stores. This in-vitro study provides the first scientific evidence on the claimed effect of Ficus Deltoidea on uterine contraction.

    Matched MeSH terms: Peptides/pharmacology
  10. Lim BY, Azmi F, Ng SF
    AAPS PharmSciTech, 2024 May 13;25(5):110.
    PMID: 38740721 DOI: 10.1208/s12249-024-02826-6
    Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.
    Matched MeSH terms: Antimicrobial Cationic Peptides/pharmacology
  11. Ghanbari R, Zarei M, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N
    Int J Mol Sci, 2015 Dec 04;16(12):28870-85.
    PMID: 26690117 DOI: 10.3390/ijms161226140
    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.
    Matched MeSH terms: Peptides/pharmacology
  12. Arockiaraj J, Kumaresan V, Bhatt P, Palanisamy R, Gnanam AJ, Pasupuleti M, et al.
    Peptides, 2014 Mar;53:79-88.
    PMID: 24269604 DOI: 10.1016/j.peptides.2013.11.008
    In this study, we reported a complete molecular characterization including bioinformatics features, gene expression, peptide synthesis and its antimicrobial activities of an anti-lipopolysaccharide (LPS) factor (ALF) cDNA identified from the established cDNA library of freshwater prawn Macrobrachium rosenbergii (named as MrALF). The mature protein has an estimated molecular weight of 11.240 kDa with an isoelectric point of 9.46. The bioinformatics analysis showed that the MrALF contains an antimicrobial peptide (AMP) region between T54 and P77 with two conserved cysteine residues (Cys55 and Cys76) which have an anti-parallel β-sheet confirmation. The β-sheet is predicted as cationic with hydrophobic nature containing a net charge of +5. The depicted AMP region is determined to be amphipathic with a predicted hydrophobic face 'FPVFI'. A highest MrALF gene expression was observed in hemocytes and is up-regulated with virus [white spot syndrome baculovirus (WSBV)], bacteria (Aeromonas hydrophila) and Escherichia coli LPS at various time points. The LPS binding region of MrALF peptide was synthesized to study the antimicrobial property, bactericidal efficiency and hemolytic capacity. The peptide showed antimicrobial activity against both the Gram-negative and Gram-positive bacteria. The bactericidal assay showed that the peptide recognized the LPS of bacterial cell walls and binding on its substrate and thereby efficiently distinguishing the pathogens. The hemolytic activity of MrALF peptide is functioning in a concentration dependant manner. In summary, the comprehensive analysis of MrALF showed it to be an effective antimicrobial peptide and thus it plays a crucial role in the defense mechanism of M. rosenbergii.
    Matched MeSH terms: Peptides/pharmacology*
  13. Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, et al.
    Molecules, 2012 Aug 10;17(8):9631-40.
    PMID: 22885359 DOI: 10.3390/molecules17089631
    The amino acid and fatty acid composition of polypeptide k and oil isolated from the seeds of Momordica charantia was analysed. The analysis revealed polypeptide k contained 9 out of 11 essential amino acids, among a total of 18 types of amino acids. Glutamic acid, aspartic acid, arginine and glycine were the most abundant (17.08%, 9.71%, 9.50% and 8.90% of total amino acids, respectively). Fatty acid analysis showed unusually high amounts of C18-0 (stearic acid, 62.31% of total fatty acid). C18-1 (oleic acid) and C18-2 (linoleic acid) were the other major fatty acid detected (12.53% and 10.40%, respectively). The oil was devoid of the short fatty acids (C4-0 to C8-0). Polypeptide k and oil were also subjected to in vitro α-glucosidase and α-amylase inhibition assays. Both polypeptide k and seed oil showed potent inhibition of α-glucosidase enzyme (79.18% and 53.55% inhibition, respectively). α-Amylase was inhibited by 35.58% and 38.02%, respectively. Collectively, the in vitro assay strongly suggests that both polypeptide k and seed oil from Momordica charantia are potent potential hypoglycemic agents.
    Matched MeSH terms: Peptides/pharmacology*
  14. Tan YN, Ayob MK, Wan Yaacob WA
    Food Chem, 2013 Jan 1;136(1):279-84.
    PMID: 23017424 DOI: 10.1016/j.foodchem.2012.08.012
    Palm kernel cake (PKC), the most useful by-product resulted from palm kernel oil production. In this study, PKC-derived protein product was found suitable for use as an antimicrobial agent with potent antibacterial activity, particularly against Bacillus species, after enzymatic hydrolysis with alcalase. The hydrolysate was further purified by gel filtration chromatography. The purified fraction was found to have 14.63±0.70% (w/w) protein, a molecular mass of 2.4kDa and low hemolytic activity (<50% hemolysis of human erythrocytes at concentration of 1000μg/ml). The presence of lysine and the major component lauric acid derivative, as indicated by electrospray ionisation-mass spectrometry (ESI-MS) direct infusion and nuclear magnetic resonance (NMR) spectroscopy, may have contributed to the antibacterial effect of purified PKC fraction. This study suggests that the antibacterial PKC compound may be not a pure peptide but instead a peptide-containing compound high in lauric acid derivative.
    Matched MeSH terms: Peptides/pharmacology
  15. Vidyadaran S, Ooi YY, Subramaiam H, Badiei A, Abdullah M, Ramasamy R, et al.
    Cell Immunol, 2009;259(1):105-10.
    PMID: 19577228 DOI: 10.1016/j.cellimm.2009.06.005
    A challenge for studies involving microglia cultures is obtaining sufficient cells for downstream experiments. Macrophage colony-stimulating factor (M-CSF) has been used to improve yield of microglia in culture. However, the effects of M-CSF on activation profiles of microglia cultures are still unclear. Microglia activation is characterised by upregulation of co-stimulatory molecules and an inflammatory phenotype. The aim of this study is to demonstrate whether M-CSF supplementation alters microglial responses in resting and activated conditions. Microglia derived from mixed glia cultures and the BV-2 microglia cell line were cultivated with/without M-CSF and activated with lipopolysaccharide (LPS) and beta amyloid (Abeta). We show M-CSF expands primary microglia without affecting microglial responses to LPS and Abeta, as shown by the comparable expression of MHC class II and CD40 to microglia grown without this growth factor. M-CSF supplementation in BV-2 cells had no effect on nitric oxide (NO) production. Therefore, M-CSF can be considered for improving microglia yield in culture without introducing activation artefacts.
    Matched MeSH terms: Amyloid beta-Peptides/pharmacology*
  16. Abdul Gaffar R, Abdul Majid FA, Sarmidi MR
    Med J Malaysia, 2008 Jul;63 Suppl A:100-1.
    PMID: 19025004
    Cashew (Anacardium occindentale L) leaves extract (CLE) has potential as tyrosinase inhibitor that can be used for therapeutic in pigmentation problem. This study investigates the real potential of CLE to inhibit tyrosinase and melanin reduction using human epidermal melanocytes. The extracts were exposed to the human melanocytes for more than 24 hours. The CLE extract exhibited potential as tyrosinase inhibitor, reduced melanin and high in antioxidant activity relative to commercial extract of Emblica sp.
    Matched MeSH terms: Peptides/pharmacology*
  17. Muhamad A, Ho KL, Rahman MB, Tejo BA, Uhrín D, Tan WS
    Org Biomol Chem, 2015 Jul 28;13(28):7780-9.
    PMID: 26100394 DOI: 10.1039/c5ob00449g
    Hepatitis B virus (HBV) infection remains a health problem globally despite the availability of effective vaccines. In the assembly of the infectious virion, both the preS and S regions of the HBV large surface antigen (L-HBsAg) interact synergistically with the viral core antigen (HBcAg). Peptides preS and S based on the L-HBsAg were demonstrated as potential inhibitors to block the viral assembly. Therefore, the objectives of this study were to determine the solution structures of these peptides and study their interactions with HBcAg. The solution structures of these peptides were solved using (1)H, (13)C, and (15)N NMR spectroscopy. Peptide preS has several structured regions of β-turns at Ser7-Pro8-Pro9, Arg11-Thr12-Thr13 and Ser22-Thr23-Thr24 sequences whereas peptide S has only one structured region observed at Ser3-Asn4-His5. Both peptides contain bend-like structures surrounding the turn structures. Docking studies revealed that both peptides interacted with the immunodominant region of HBcAg located at the tip of the viral capsid spikes. Saturation Transfer Difference (STD) NMR experiments identified several aromatic residues in peptides preS and S that interact with HBcAg. This study provides insights into the contact regions of L-HBsAg and HBcAg at atomic resolution which can be used to design antiviral agents that inhibit HBV morphogenesis.
    Matched MeSH terms: Peptides/pharmacology
  18. Chew MF, Tham HW, Rajik M, Sharifah SH
    J Appl Microbiol, 2015 Oct;119(4):1170-80.
    PMID: 26248692 DOI: 10.1111/jam.12921
    To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action.
    Matched MeSH terms: Peptides/pharmacology*
  19. Faruck MO, Yusof F, Chowdhury S
    Peptides, 2016 06;80:80-88.
    PMID: 26093218 DOI: 10.1016/j.peptides.2015.06.001
    Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.
    Matched MeSH terms: Peptides/pharmacology
  20. Agyei D, Pan S, Acquah C, Bekhit AEA, Danquah MK
    J Food Biochem, 2019 01;43(1):e12482.
    PMID: 31353495 DOI: 10.1111/jfbc.12482
    Peptides with biological properties, that is, bioactive peptides, are a class of biomolecules whose health-promoting properties are increasingly being exploited in food and health products. However, research on targeted techniques for the detection and quantification of these peptides is still in its infancy. Such information is needed in order to enhance the biological and chemometric characterization of peptides and their subsequent application in the functional food and pharmaceutical industries. In this review, the role of classic techniques such as electrophoretic, chromatographic, and peptide mass spectrometry in the structure-informed detection and quantitation of bioactive peptides are discussed. Prospects for the use of aptamers in the characterization of bioactive peptides are also discussed. PRACTICAL APPLICATIONS: Although bioactive peptides have huge potential applications in the functional foods and health area, there are limited techniques in enhancing throughput detection, quantification, and characterization of these peptides. This review discusses state-of-the-art techniques relevant in complementing bioactive detection and profiling irrespective of the small number of amino acid units. Insights into challenges, possible remedies and prevailing areas requiring thorough research in the extant literature for food chemists and biotechnologists are also presented.
    Matched MeSH terms: Peptides/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links